This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference of two simple functions is a simple function. (Contributed by Mario Carneiro, 6-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | i1fsub | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( 𝐹 ∘f − 𝐺 ) ∈ dom ∫1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reex | ⊢ ℝ ∈ V | |
| 2 | i1ff | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) | |
| 3 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 4 | fss | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : ℝ ⟶ ℂ ) | |
| 5 | 2 3 4 | sylancl | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℂ ) |
| 6 | i1ff | ⊢ ( 𝐺 ∈ dom ∫1 → 𝐺 : ℝ ⟶ ℝ ) | |
| 7 | fss | ⊢ ( ( 𝐺 : ℝ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐺 : ℝ ⟶ ℂ ) | |
| 8 | 6 3 7 | sylancl | ⊢ ( 𝐺 ∈ dom ∫1 → 𝐺 : ℝ ⟶ ℂ ) |
| 9 | ofnegsub | ⊢ ( ( ℝ ∈ V ∧ 𝐹 : ℝ ⟶ ℂ ∧ 𝐺 : ℝ ⟶ ℂ ) → ( 𝐹 ∘f + ( ( ℝ × { - 1 } ) ∘f · 𝐺 ) ) = ( 𝐹 ∘f − 𝐺 ) ) | |
| 10 | 1 5 8 9 | mp3an3an | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( 𝐹 ∘f + ( ( ℝ × { - 1 } ) ∘f · 𝐺 ) ) = ( 𝐹 ∘f − 𝐺 ) ) |
| 11 | simpl | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → 𝐹 ∈ dom ∫1 ) | |
| 12 | simpr | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → 𝐺 ∈ dom ∫1 ) | |
| 13 | neg1rr | ⊢ - 1 ∈ ℝ | |
| 14 | 13 | a1i | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → - 1 ∈ ℝ ) |
| 15 | 12 14 | i1fmulc | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( ( ℝ × { - 1 } ) ∘f · 𝐺 ) ∈ dom ∫1 ) |
| 16 | 11 15 | i1fadd | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( 𝐹 ∘f + ( ( ℝ × { - 1 } ) ∘f · 𝐺 ) ) ∈ dom ∫1 ) |
| 17 | 10 16 | eqeltrrd | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( 𝐹 ∘f − 𝐺 ) ∈ dom ∫1 ) |