This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential of _i x. _pi is -u 1 . (Contributed by Paul Chapman, 23-Jan-2008) (Revised by Mario Carneiro, 10-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efipi | ⊢ ( exp ‘ ( i · π ) ) = - 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | picn | ⊢ π ∈ ℂ | |
| 2 | efival | ⊢ ( π ∈ ℂ → ( exp ‘ ( i · π ) ) = ( ( cos ‘ π ) + ( i · ( sin ‘ π ) ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( exp ‘ ( i · π ) ) = ( ( cos ‘ π ) + ( i · ( sin ‘ π ) ) ) |
| 4 | cospi | ⊢ ( cos ‘ π ) = - 1 | |
| 5 | sinpi | ⊢ ( sin ‘ π ) = 0 | |
| 6 | 5 | oveq2i | ⊢ ( i · ( sin ‘ π ) ) = ( i · 0 ) |
| 7 | it0e0 | ⊢ ( i · 0 ) = 0 | |
| 8 | 6 7 | eqtri | ⊢ ( i · ( sin ‘ π ) ) = 0 |
| 9 | 4 8 | oveq12i | ⊢ ( ( cos ‘ π ) + ( i · ( sin ‘ π ) ) ) = ( - 1 + 0 ) |
| 10 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 11 | 10 | addridi | ⊢ ( - 1 + 0 ) = - 1 |
| 12 | 9 11 | eqtri | ⊢ ( ( cos ‘ π ) + ( i · ( sin ‘ π ) ) ) = - 1 |
| 13 | 3 12 | eqtri | ⊢ ( exp ‘ ( i · π ) ) = - 1 |