This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse image of a subspace under a homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmhmima.x | ⊢ 𝑋 = ( LSubSp ‘ 𝑆 ) | |
| lmhmima.y | ⊢ 𝑌 = ( LSubSp ‘ 𝑇 ) | ||
| Assertion | lmhmpreima | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) → ( ◡ 𝐹 “ 𝑈 ) ∈ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmima.x | ⊢ 𝑋 = ( LSubSp ‘ 𝑆 ) | |
| 2 | lmhmima.y | ⊢ 𝑌 = ( LSubSp ‘ 𝑇 ) | |
| 3 | lmghm | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) | |
| 4 | lmhmlmod2 | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑇 ∈ LMod ) | |
| 5 | 2 | lsssubg | ⊢ ( ( 𝑇 ∈ LMod ∧ 𝑈 ∈ 𝑌 ) → 𝑈 ∈ ( SubGrp ‘ 𝑇 ) ) |
| 6 | 4 5 | sylan | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) → 𝑈 ∈ ( SubGrp ‘ 𝑇 ) ) |
| 7 | ghmpreima | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑇 ) ) → ( ◡ 𝐹 “ 𝑈 ) ∈ ( SubGrp ‘ 𝑆 ) ) | |
| 8 | 3 6 7 | syl2an2r | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) → ( ◡ 𝐹 “ 𝑈 ) ∈ ( SubGrp ‘ 𝑆 ) ) |
| 9 | lmhmlmod1 | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑆 ∈ LMod ) | |
| 10 | 9 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) → 𝑆 ∈ LMod ) |
| 11 | simprl | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) | |
| 12 | cnvimass | ⊢ ( ◡ 𝐹 “ 𝑈 ) ⊆ dom 𝐹 | |
| 13 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 14 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 15 | 13 14 | lmhmf | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 16 | 15 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 17 | 12 16 | fssdm | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) → ( ◡ 𝐹 “ 𝑈 ) ⊆ ( Base ‘ 𝑆 ) ) |
| 18 | 17 | sselda | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) → 𝑏 ∈ ( Base ‘ 𝑆 ) ) |
| 19 | 18 | adantrl | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) → 𝑏 ∈ ( Base ‘ 𝑆 ) ) |
| 20 | eqid | ⊢ ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑆 ) | |
| 21 | eqid | ⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) | |
| 22 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) | |
| 23 | 13 20 21 22 | lmodvscl | ⊢ ( ( 𝑆 ∈ LMod ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ) |
| 24 | 10 11 19 23 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ) |
| 25 | simpll | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) | |
| 26 | eqid | ⊢ ( ·𝑠 ‘ 𝑇 ) = ( ·𝑠 ‘ 𝑇 ) | |
| 27 | 20 22 13 21 26 | lmhmlin | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 28 | 25 11 19 27 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) → ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 29 | 4 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) → 𝑇 ∈ LMod ) |
| 30 | simplr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) → 𝑈 ∈ 𝑌 ) | |
| 31 | eqid | ⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) | |
| 32 | 20 31 | lmhmsca | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑆 ) ) |
| 33 | 32 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) → ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑆 ) ) |
| 34 | 33 | fveq2d | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) → ( Base ‘ ( Scalar ‘ 𝑇 ) ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
| 35 | 34 | eleq2d | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) → ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ↔ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ) |
| 36 | 35 | biimpar | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) |
| 37 | 36 | adantrr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) |
| 38 | 16 | ffund | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) → Fun 𝐹 ) |
| 39 | simprr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) → 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) | |
| 40 | fvimacnvi | ⊢ ( ( Fun 𝐹 ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝑈 ) | |
| 41 | 38 39 40 | syl2an2r | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝑈 ) |
| 42 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑇 ) ) = ( Base ‘ ( Scalar ‘ 𝑇 ) ) | |
| 43 | 31 26 42 2 | lssvscl | ⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑈 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑏 ) ) ∈ 𝑈 ) |
| 44 | 29 30 37 41 43 | syl22anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑏 ) ) ∈ 𝑈 ) |
| 45 | 28 44 | eqeltrd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) → ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ) ∈ 𝑈 ) |
| 46 | ffn | ⊢ ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) → 𝐹 Fn ( Base ‘ 𝑆 ) ) | |
| 47 | elpreima | ⊢ ( 𝐹 Fn ( Base ‘ 𝑆 ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝑈 ) ↔ ( ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ) ∈ 𝑈 ) ) ) | |
| 48 | 16 46 47 | 3syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝑈 ) ↔ ( ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ) ∈ 𝑈 ) ) ) |
| 49 | 48 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝑈 ) ↔ ( ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ) ∈ 𝑈 ) ) ) |
| 50 | 24 45 49 | mpbir2and | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝑈 ) ) |
| 51 | 50 | ralrimivva | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) → ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∀ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝑈 ) ) |
| 52 | 9 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) → 𝑆 ∈ LMod ) |
| 53 | 20 22 13 21 1 | islss4 | ⊢ ( 𝑆 ∈ LMod → ( ( ◡ 𝐹 “ 𝑈 ) ∈ 𝑋 ↔ ( ( ◡ 𝐹 “ 𝑈 ) ∈ ( SubGrp ‘ 𝑆 ) ∧ ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∀ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) ) |
| 54 | 52 53 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) → ( ( ◡ 𝐹 “ 𝑈 ) ∈ 𝑋 ↔ ( ( ◡ 𝐹 “ 𝑈 ) ∈ ( SubGrp ‘ 𝑆 ) ∧ ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∀ 𝑏 ∈ ( ◡ 𝐹 “ 𝑈 ) ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝑈 ) ) ) ) |
| 55 | 8 51 54 | mpbir2and | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ∈ 𝑌 ) → ( ◡ 𝐹 “ 𝑈 ) ∈ 𝑋 ) |