This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Homomorphisms preserve spans. (Contributed by Stefan O'Rear, 1-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmhmlsp.v | ⊢ 𝑉 = ( Base ‘ 𝑆 ) | |
| lmhmlsp.k | ⊢ 𝐾 = ( LSpan ‘ 𝑆 ) | ||
| lmhmlsp.l | ⊢ 𝐿 = ( LSpan ‘ 𝑇 ) | ||
| Assertion | lmhmlsp | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → ( 𝐹 “ ( 𝐾 ‘ 𝑈 ) ) = ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmlsp.v | ⊢ 𝑉 = ( Base ‘ 𝑆 ) | |
| 2 | lmhmlsp.k | ⊢ 𝐾 = ( LSpan ‘ 𝑆 ) | |
| 3 | lmhmlsp.l | ⊢ 𝐿 = ( LSpan ‘ 𝑇 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 5 | 1 4 | lmhmf | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
| 7 | 6 | ffund | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → Fun 𝐹 ) |
| 8 | lmhmlmod1 | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑆 ∈ LMod ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → 𝑆 ∈ LMod ) |
| 10 | lmhmlmod2 | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑇 ∈ LMod ) | |
| 11 | 10 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → 𝑇 ∈ LMod ) |
| 12 | imassrn | ⊢ ( 𝐹 “ 𝑈 ) ⊆ ran 𝐹 | |
| 13 | 6 | frnd | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → ran 𝐹 ⊆ ( Base ‘ 𝑇 ) ) |
| 14 | 12 13 | sstrid | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → ( 𝐹 “ 𝑈 ) ⊆ ( Base ‘ 𝑇 ) ) |
| 15 | eqid | ⊢ ( LSubSp ‘ 𝑇 ) = ( LSubSp ‘ 𝑇 ) | |
| 16 | 4 15 3 | lspcl | ⊢ ( ( 𝑇 ∈ LMod ∧ ( 𝐹 “ 𝑈 ) ⊆ ( Base ‘ 𝑇 ) ) → ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ∈ ( LSubSp ‘ 𝑇 ) ) |
| 17 | 11 14 16 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ∈ ( LSubSp ‘ 𝑇 ) ) |
| 18 | eqid | ⊢ ( LSubSp ‘ 𝑆 ) = ( LSubSp ‘ 𝑆 ) | |
| 19 | 18 15 | lmhmpreima | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ∈ ( LSubSp ‘ 𝑇 ) ) → ( ◡ 𝐹 “ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) ∈ ( LSubSp ‘ 𝑆 ) ) |
| 20 | 17 19 | syldan | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → ( ◡ 𝐹 “ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) ∈ ( LSubSp ‘ 𝑆 ) ) |
| 21 | incom | ⊢ ( dom 𝐹 ∩ 𝑈 ) = ( 𝑈 ∩ dom 𝐹 ) | |
| 22 | simpr | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → 𝑈 ⊆ 𝑉 ) | |
| 23 | 6 | fdmd | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → dom 𝐹 = 𝑉 ) |
| 24 | 22 23 | sseqtrrd | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → 𝑈 ⊆ dom 𝐹 ) |
| 25 | dfss2 | ⊢ ( 𝑈 ⊆ dom 𝐹 ↔ ( 𝑈 ∩ dom 𝐹 ) = 𝑈 ) | |
| 26 | 24 25 | sylib | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑈 ∩ dom 𝐹 ) = 𝑈 ) |
| 27 | 21 26 | eqtr2id | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → 𝑈 = ( dom 𝐹 ∩ 𝑈 ) ) |
| 28 | dminss | ⊢ ( dom 𝐹 ∩ 𝑈 ) ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) | |
| 29 | 27 28 | eqsstrdi | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → 𝑈 ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) ) |
| 30 | 4 3 | lspssid | ⊢ ( ( 𝑇 ∈ LMod ∧ ( 𝐹 “ 𝑈 ) ⊆ ( Base ‘ 𝑇 ) ) → ( 𝐹 “ 𝑈 ) ⊆ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) |
| 31 | 11 14 30 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → ( 𝐹 “ 𝑈 ) ⊆ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) |
| 32 | imass2 | ⊢ ( ( 𝐹 “ 𝑈 ) ⊆ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) ⊆ ( ◡ 𝐹 “ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) ) | |
| 33 | 31 32 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) ⊆ ( ◡ 𝐹 “ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) ) |
| 34 | 29 33 | sstrd | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → 𝑈 ⊆ ( ◡ 𝐹 “ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) ) |
| 35 | 18 2 | lspssp | ⊢ ( ( 𝑆 ∈ LMod ∧ ( ◡ 𝐹 “ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) ∈ ( LSubSp ‘ 𝑆 ) ∧ 𝑈 ⊆ ( ◡ 𝐹 “ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) ) → ( 𝐾 ‘ 𝑈 ) ⊆ ( ◡ 𝐹 “ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) ) |
| 36 | 9 20 34 35 | syl3anc | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → ( 𝐾 ‘ 𝑈 ) ⊆ ( ◡ 𝐹 “ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) ) |
| 37 | funimass2 | ⊢ ( ( Fun 𝐹 ∧ ( 𝐾 ‘ 𝑈 ) ⊆ ( ◡ 𝐹 “ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) ) → ( 𝐹 “ ( 𝐾 ‘ 𝑈 ) ) ⊆ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) | |
| 38 | 7 36 37 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → ( 𝐹 “ ( 𝐾 ‘ 𝑈 ) ) ⊆ ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) |
| 39 | 1 18 2 | lspcl | ⊢ ( ( 𝑆 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ) → ( 𝐾 ‘ 𝑈 ) ∈ ( LSubSp ‘ 𝑆 ) ) |
| 40 | 9 22 39 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → ( 𝐾 ‘ 𝑈 ) ∈ ( LSubSp ‘ 𝑆 ) ) |
| 41 | 18 15 | lmhmima | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝐾 ‘ 𝑈 ) ∈ ( LSubSp ‘ 𝑆 ) ) → ( 𝐹 “ ( 𝐾 ‘ 𝑈 ) ) ∈ ( LSubSp ‘ 𝑇 ) ) |
| 42 | 40 41 | syldan | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → ( 𝐹 “ ( 𝐾 ‘ 𝑈 ) ) ∈ ( LSubSp ‘ 𝑇 ) ) |
| 43 | 1 2 | lspssid | ⊢ ( ( 𝑆 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ) → 𝑈 ⊆ ( 𝐾 ‘ 𝑈 ) ) |
| 44 | 9 22 43 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → 𝑈 ⊆ ( 𝐾 ‘ 𝑈 ) ) |
| 45 | imass2 | ⊢ ( 𝑈 ⊆ ( 𝐾 ‘ 𝑈 ) → ( 𝐹 “ 𝑈 ) ⊆ ( 𝐹 “ ( 𝐾 ‘ 𝑈 ) ) ) | |
| 46 | 44 45 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → ( 𝐹 “ 𝑈 ) ⊆ ( 𝐹 “ ( 𝐾 ‘ 𝑈 ) ) ) |
| 47 | 15 3 | lspssp | ⊢ ( ( 𝑇 ∈ LMod ∧ ( 𝐹 “ ( 𝐾 ‘ 𝑈 ) ) ∈ ( LSubSp ‘ 𝑇 ) ∧ ( 𝐹 “ 𝑈 ) ⊆ ( 𝐹 “ ( 𝐾 ‘ 𝑈 ) ) ) → ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ⊆ ( 𝐹 “ ( 𝐾 ‘ 𝑈 ) ) ) |
| 48 | 11 42 46 47 | syl3anc | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ⊆ ( 𝐹 “ ( 𝐾 ‘ 𝑈 ) ) ) |
| 49 | 38 48 | eqssd | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑈 ⊆ 𝑉 ) → ( 𝐹 “ ( 𝐾 ‘ 𝑈 ) ) = ( 𝐿 ‘ ( 𝐹 “ 𝑈 ) ) ) |