This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse image of a subgroup under a homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ghmpreima | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) → ( ◡ 𝐹 “ 𝑉 ) ∈ ( SubGrp ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvimass | ⊢ ( ◡ 𝐹 “ 𝑉 ) ⊆ dom 𝐹 | |
| 2 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 4 | 2 3 | ghmf | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 6 | 1 5 | fssdm | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) → ( ◡ 𝐹 “ 𝑉 ) ⊆ ( Base ‘ 𝑆 ) ) |
| 7 | ghmgrp1 | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑆 ∈ Grp ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) → 𝑆 ∈ Grp ) |
| 9 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 10 | 2 9 | grpidcl | ⊢ ( 𝑆 ∈ Grp → ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 11 | 8 10 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) → ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 12 | eqid | ⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) | |
| 13 | 9 12 | ghmid | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
| 15 | 12 | subg0cl | ⊢ ( 𝑉 ∈ ( SubGrp ‘ 𝑇 ) → ( 0g ‘ 𝑇 ) ∈ 𝑉 ) |
| 16 | 15 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) → ( 0g ‘ 𝑇 ) ∈ 𝑉 ) |
| 17 | 14 16 | eqeltrd | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ∈ 𝑉 ) |
| 18 | 5 | ffnd | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) → 𝐹 Fn ( Base ‘ 𝑆 ) ) |
| 19 | elpreima | ⊢ ( 𝐹 Fn ( Base ‘ 𝑆 ) → ( ( 0g ‘ 𝑆 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ↔ ( ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ∈ 𝑉 ) ) ) | |
| 20 | 18 19 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) → ( ( 0g ‘ 𝑆 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ↔ ( ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ∈ 𝑉 ) ) ) |
| 21 | 11 17 20 | mpbir2and | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) → ( 0g ‘ 𝑆 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ) |
| 22 | 21 | ne0d | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) → ( ◡ 𝐹 “ 𝑉 ) ≠ ∅ ) |
| 23 | elpreima | ⊢ ( 𝐹 Fn ( Base ‘ 𝑆 ) → ( 𝑎 ∈ ( ◡ 𝐹 “ 𝑉 ) ↔ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ) ) ) | |
| 24 | 18 23 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) → ( 𝑎 ∈ ( ◡ 𝐹 “ 𝑉 ) ↔ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ) ) ) |
| 25 | elpreima | ⊢ ( 𝐹 Fn ( Base ‘ 𝑆 ) → ( 𝑏 ∈ ( ◡ 𝐹 “ 𝑉 ) ↔ ( 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑉 ) ) ) | |
| 26 | 18 25 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) → ( 𝑏 ∈ ( ◡ 𝐹 “ 𝑉 ) ↔ ( 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑉 ) ) ) |
| 27 | 26 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ) ) → ( 𝑏 ∈ ( ◡ 𝐹 “ 𝑉 ) ↔ ( 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑉 ) ) ) |
| 28 | 7 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) ∧ ( ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ) ∧ ( 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑉 ) ) ) → 𝑆 ∈ Grp ) |
| 29 | simprll | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) ∧ ( ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ) ∧ ( 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑉 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) | |
| 30 | simprrl | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) ∧ ( ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ) ∧ ( 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑉 ) ) ) → 𝑏 ∈ ( Base ‘ 𝑆 ) ) | |
| 31 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 32 | 2 31 | grpcl | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ) |
| 33 | 28 29 30 32 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) ∧ ( ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ) ∧ ( 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑉 ) ) ) → ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ) |
| 34 | simpll | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) ∧ ( ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ) ∧ ( 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑉 ) ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) | |
| 35 | eqid | ⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) | |
| 36 | 2 31 35 | ghmlin | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 37 | 34 29 30 36 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) ∧ ( ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ) ∧ ( 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑉 ) ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 38 | simplr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) ∧ ( ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ) ∧ ( 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑉 ) ) ) → 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) | |
| 39 | simprlr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) ∧ ( ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ) ∧ ( 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑉 ) ) ) → ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ) | |
| 40 | simprrr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) ∧ ( ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ) ∧ ( 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑉 ) ) ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝑉 ) | |
| 41 | 35 | subgcl | ⊢ ( ( 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑏 ) ) ∈ 𝑉 ) |
| 42 | 38 39 40 41 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) ∧ ( ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ) ∧ ( 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑉 ) ) ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑏 ) ) ∈ 𝑉 ) |
| 43 | 37 42 | eqeltrd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) ∧ ( ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ) ∧ ( 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑉 ) ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) ∈ 𝑉 ) |
| 44 | elpreima | ⊢ ( 𝐹 Fn ( Base ‘ 𝑆 ) → ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ↔ ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) ∈ 𝑉 ) ) ) | |
| 45 | 18 44 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) → ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ↔ ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) ∈ 𝑉 ) ) ) |
| 46 | 45 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) ∧ ( ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ) ∧ ( 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑉 ) ) ) → ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ↔ ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) ∈ 𝑉 ) ) ) |
| 47 | 33 43 46 | mpbir2and | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) ∧ ( ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ) ∧ ( 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑉 ) ) ) → ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ) |
| 48 | 47 | expr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ) ) → ( ( 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑏 ) ∈ 𝑉 ) → ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) |
| 49 | 27 48 | sylbid | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ) ) → ( 𝑏 ∈ ( ◡ 𝐹 “ 𝑉 ) → ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) |
| 50 | 49 | ralrimiv | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ) ) → ∀ 𝑏 ∈ ( ◡ 𝐹 “ 𝑉 ) ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ) |
| 51 | simprl | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ) ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) | |
| 52 | eqid | ⊢ ( invg ‘ 𝑆 ) = ( invg ‘ 𝑆 ) | |
| 53 | 2 52 | grpinvcl | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑎 ∈ ( Base ‘ 𝑆 ) ) → ( ( invg ‘ 𝑆 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝑆 ) ) |
| 54 | 8 51 53 | syl2an2r | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ) ) → ( ( invg ‘ 𝑆 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝑆 ) ) |
| 55 | eqid | ⊢ ( invg ‘ 𝑇 ) = ( invg ‘ 𝑇 ) | |
| 56 | 2 52 55 | ghminv | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑎 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑎 ) ) = ( ( invg ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑎 ) ) ) |
| 57 | 56 | ad2ant2r | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ) ) → ( 𝐹 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑎 ) ) = ( ( invg ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑎 ) ) ) |
| 58 | 55 | subginvcl | ⊢ ( ( 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ) → ( ( invg ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑎 ) ) ∈ 𝑉 ) |
| 59 | 58 | ad2ant2l | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ) ) → ( ( invg ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑎 ) ) ∈ 𝑉 ) |
| 60 | 57 59 | eqeltrd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ) ) → ( 𝐹 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑎 ) ) ∈ 𝑉 ) |
| 61 | elpreima | ⊢ ( 𝐹 Fn ( Base ‘ 𝑆 ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝑎 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ↔ ( ( ( invg ‘ 𝑆 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑎 ) ) ∈ 𝑉 ) ) ) | |
| 62 | 18 61 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝑎 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ↔ ( ( ( invg ‘ 𝑆 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑎 ) ) ∈ 𝑉 ) ) ) |
| 63 | 62 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ) ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝑎 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ↔ ( ( ( invg ‘ 𝑆 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑎 ) ) ∈ 𝑉 ) ) ) |
| 64 | 54 60 63 | mpbir2and | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ) ) → ( ( invg ‘ 𝑆 ) ‘ 𝑎 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ) |
| 65 | 50 64 | jca | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ) ) → ( ∀ 𝑏 ∈ ( ◡ 𝐹 “ 𝑉 ) ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ∧ ( ( invg ‘ 𝑆 ) ‘ 𝑎 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) |
| 66 | 65 | ex | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) → ( ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑎 ) ∈ 𝑉 ) → ( ∀ 𝑏 ∈ ( ◡ 𝐹 “ 𝑉 ) ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ∧ ( ( invg ‘ 𝑆 ) ‘ 𝑎 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) ) |
| 67 | 24 66 | sylbid | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) → ( 𝑎 ∈ ( ◡ 𝐹 “ 𝑉 ) → ( ∀ 𝑏 ∈ ( ◡ 𝐹 “ 𝑉 ) ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ∧ ( ( invg ‘ 𝑆 ) ‘ 𝑎 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) ) |
| 68 | 67 | ralrimiv | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) → ∀ 𝑎 ∈ ( ◡ 𝐹 “ 𝑉 ) ( ∀ 𝑏 ∈ ( ◡ 𝐹 “ 𝑉 ) ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ∧ ( ( invg ‘ 𝑆 ) ‘ 𝑎 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) |
| 69 | 2 31 52 | issubg2 | ⊢ ( 𝑆 ∈ Grp → ( ( ◡ 𝐹 “ 𝑉 ) ∈ ( SubGrp ‘ 𝑆 ) ↔ ( ( ◡ 𝐹 “ 𝑉 ) ⊆ ( Base ‘ 𝑆 ) ∧ ( ◡ 𝐹 “ 𝑉 ) ≠ ∅ ∧ ∀ 𝑎 ∈ ( ◡ 𝐹 “ 𝑉 ) ( ∀ 𝑏 ∈ ( ◡ 𝐹 “ 𝑉 ) ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ∧ ( ( invg ‘ 𝑆 ) ‘ 𝑎 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) ) ) |
| 70 | 8 69 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) → ( ( ◡ 𝐹 “ 𝑉 ) ∈ ( SubGrp ‘ 𝑆 ) ↔ ( ( ◡ 𝐹 “ 𝑉 ) ⊆ ( Base ‘ 𝑆 ) ∧ ( ◡ 𝐹 “ 𝑉 ) ≠ ∅ ∧ ∀ 𝑎 ∈ ( ◡ 𝐹 “ 𝑉 ) ( ∀ 𝑏 ∈ ( ◡ 𝐹 “ 𝑉 ) ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ∧ ( ( invg ‘ 𝑆 ) ‘ 𝑎 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) ) ) |
| 71 | 6 22 68 70 | mpbir3and | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) → ( ◡ 𝐹 “ 𝑉 ) ∈ ( SubGrp ‘ 𝑆 ) ) |