This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse image of a subspace under a homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmhmima.x | |- X = ( LSubSp ` S ) |
|
| lmhmima.y | |- Y = ( LSubSp ` T ) |
||
| Assertion | lmhmpreima | |- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> ( `' F " U ) e. X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmima.x | |- X = ( LSubSp ` S ) |
|
| 2 | lmhmima.y | |- Y = ( LSubSp ` T ) |
|
| 3 | lmghm | |- ( F e. ( S LMHom T ) -> F e. ( S GrpHom T ) ) |
|
| 4 | lmhmlmod2 | |- ( F e. ( S LMHom T ) -> T e. LMod ) |
|
| 5 | 2 | lsssubg | |- ( ( T e. LMod /\ U e. Y ) -> U e. ( SubGrp ` T ) ) |
| 6 | 4 5 | sylan | |- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> U e. ( SubGrp ` T ) ) |
| 7 | ghmpreima | |- ( ( F e. ( S GrpHom T ) /\ U e. ( SubGrp ` T ) ) -> ( `' F " U ) e. ( SubGrp ` S ) ) |
|
| 8 | 3 6 7 | syl2an2r | |- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> ( `' F " U ) e. ( SubGrp ` S ) ) |
| 9 | lmhmlmod1 | |- ( F e. ( S LMHom T ) -> S e. LMod ) |
|
| 10 | 9 | ad2antrr | |- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> S e. LMod ) |
| 11 | simprl | |- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> a e. ( Base ` ( Scalar ` S ) ) ) |
|
| 12 | cnvimass | |- ( `' F " U ) C_ dom F |
|
| 13 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 14 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 15 | 13 14 | lmhmf | |- ( F e. ( S LMHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 16 | 15 | adantr | |- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 17 | 12 16 | fssdm | |- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> ( `' F " U ) C_ ( Base ` S ) ) |
| 18 | 17 | sselda | |- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ b e. ( `' F " U ) ) -> b e. ( Base ` S ) ) |
| 19 | 18 | adantrl | |- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> b e. ( Base ` S ) ) |
| 20 | eqid | |- ( Scalar ` S ) = ( Scalar ` S ) |
|
| 21 | eqid | |- ( .s ` S ) = ( .s ` S ) |
|
| 22 | eqid | |- ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` S ) ) |
|
| 23 | 13 20 21 22 | lmodvscl | |- ( ( S e. LMod /\ a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` S ) ) -> ( a ( .s ` S ) b ) e. ( Base ` S ) ) |
| 24 | 10 11 19 23 | syl3anc | |- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> ( a ( .s ` S ) b ) e. ( Base ` S ) ) |
| 25 | simpll | |- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> F e. ( S LMHom T ) ) |
|
| 26 | eqid | |- ( .s ` T ) = ( .s ` T ) |
|
| 27 | 20 22 13 21 26 | lmhmlin | |- ( ( F e. ( S LMHom T ) /\ a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` S ) ) -> ( F ` ( a ( .s ` S ) b ) ) = ( a ( .s ` T ) ( F ` b ) ) ) |
| 28 | 25 11 19 27 | syl3anc | |- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> ( F ` ( a ( .s ` S ) b ) ) = ( a ( .s ` T ) ( F ` b ) ) ) |
| 29 | 4 | ad2antrr | |- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> T e. LMod ) |
| 30 | simplr | |- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> U e. Y ) |
|
| 31 | eqid | |- ( Scalar ` T ) = ( Scalar ` T ) |
|
| 32 | 20 31 | lmhmsca | |- ( F e. ( S LMHom T ) -> ( Scalar ` T ) = ( Scalar ` S ) ) |
| 33 | 32 | adantr | |- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> ( Scalar ` T ) = ( Scalar ` S ) ) |
| 34 | 33 | fveq2d | |- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> ( Base ` ( Scalar ` T ) ) = ( Base ` ( Scalar ` S ) ) ) |
| 35 | 34 | eleq2d | |- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> ( a e. ( Base ` ( Scalar ` T ) ) <-> a e. ( Base ` ( Scalar ` S ) ) ) ) |
| 36 | 35 | biimpar | |- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ a e. ( Base ` ( Scalar ` S ) ) ) -> a e. ( Base ` ( Scalar ` T ) ) ) |
| 37 | 36 | adantrr | |- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> a e. ( Base ` ( Scalar ` T ) ) ) |
| 38 | 16 | ffund | |- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> Fun F ) |
| 39 | simprr | |- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> b e. ( `' F " U ) ) |
|
| 40 | fvimacnvi | |- ( ( Fun F /\ b e. ( `' F " U ) ) -> ( F ` b ) e. U ) |
|
| 41 | 38 39 40 | syl2an2r | |- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> ( F ` b ) e. U ) |
| 42 | eqid | |- ( Base ` ( Scalar ` T ) ) = ( Base ` ( Scalar ` T ) ) |
|
| 43 | 31 26 42 2 | lssvscl | |- ( ( ( T e. LMod /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` T ) ) /\ ( F ` b ) e. U ) ) -> ( a ( .s ` T ) ( F ` b ) ) e. U ) |
| 44 | 29 30 37 41 43 | syl22anc | |- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> ( a ( .s ` T ) ( F ` b ) ) e. U ) |
| 45 | 28 44 | eqeltrd | |- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> ( F ` ( a ( .s ` S ) b ) ) e. U ) |
| 46 | ffn | |- ( F : ( Base ` S ) --> ( Base ` T ) -> F Fn ( Base ` S ) ) |
|
| 47 | elpreima | |- ( F Fn ( Base ` S ) -> ( ( a ( .s ` S ) b ) e. ( `' F " U ) <-> ( ( a ( .s ` S ) b ) e. ( Base ` S ) /\ ( F ` ( a ( .s ` S ) b ) ) e. U ) ) ) |
|
| 48 | 16 46 47 | 3syl | |- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> ( ( a ( .s ` S ) b ) e. ( `' F " U ) <-> ( ( a ( .s ` S ) b ) e. ( Base ` S ) /\ ( F ` ( a ( .s ` S ) b ) ) e. U ) ) ) |
| 49 | 48 | adantr | |- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> ( ( a ( .s ` S ) b ) e. ( `' F " U ) <-> ( ( a ( .s ` S ) b ) e. ( Base ` S ) /\ ( F ` ( a ( .s ` S ) b ) ) e. U ) ) ) |
| 50 | 24 45 49 | mpbir2and | |- ( ( ( F e. ( S LMHom T ) /\ U e. Y ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( `' F " U ) ) ) -> ( a ( .s ` S ) b ) e. ( `' F " U ) ) |
| 51 | 50 | ralrimivva | |- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> A. a e. ( Base ` ( Scalar ` S ) ) A. b e. ( `' F " U ) ( a ( .s ` S ) b ) e. ( `' F " U ) ) |
| 52 | 9 | adantr | |- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> S e. LMod ) |
| 53 | 20 22 13 21 1 | islss4 | |- ( S e. LMod -> ( ( `' F " U ) e. X <-> ( ( `' F " U ) e. ( SubGrp ` S ) /\ A. a e. ( Base ` ( Scalar ` S ) ) A. b e. ( `' F " U ) ( a ( .s ` S ) b ) e. ( `' F " U ) ) ) ) |
| 54 | 52 53 | syl | |- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> ( ( `' F " U ) e. X <-> ( ( `' F " U ) e. ( SubGrp ` S ) /\ A. a e. ( Base ` ( Scalar ` S ) ) A. b e. ( `' F " U ) ( a ( .s ` S ) b ) e. ( `' F " U ) ) ) ) |
| 55 | 8 51 54 | mpbir2and | |- ( ( F e. ( S LMHom T ) /\ U e. Y ) -> ( `' F " U ) e. X ) |