This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of a preimage is a function value argument. (Contributed by NM, 4-May-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvimacnvi | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi | ⊢ ( 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) → { 𝐴 } ⊆ ( ◡ 𝐹 “ 𝐵 ) ) | |
| 2 | funimass2 | ⊢ ( ( Fun 𝐹 ∧ { 𝐴 } ⊆ ( ◡ 𝐹 “ 𝐵 ) ) → ( 𝐹 “ { 𝐴 } ) ⊆ 𝐵 ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) → ( 𝐹 “ { 𝐴 } ) ⊆ 𝐵 ) |
| 4 | fvex | ⊢ ( 𝐹 ‘ 𝐴 ) ∈ V | |
| 5 | 4 | snss | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ↔ { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝐵 ) |
| 6 | cnvimass | ⊢ ( ◡ 𝐹 “ 𝐵 ) ⊆ dom 𝐹 | |
| 7 | 6 | sseli | ⊢ ( 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) → 𝐴 ∈ dom 𝐹 ) |
| 8 | funfn | ⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) | |
| 9 | fnsnfv | ⊢ ( ( 𝐹 Fn dom 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → { ( 𝐹 ‘ 𝐴 ) } = ( 𝐹 “ { 𝐴 } ) ) | |
| 10 | 8 9 | sylanb | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → { ( 𝐹 ‘ 𝐴 ) } = ( 𝐹 “ { 𝐴 } ) ) |
| 11 | 7 10 | sylan2 | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) → { ( 𝐹 ‘ 𝐴 ) } = ( 𝐹 “ { 𝐴 } ) ) |
| 12 | 11 | sseq1d | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) → ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝐵 ↔ ( 𝐹 “ { 𝐴 } ) ⊆ 𝐵 ) ) |
| 13 | 5 12 | bitrid | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ↔ ( 𝐹 “ { 𝐴 } ) ⊆ 𝐵 ) ) |
| 14 | 3 13 | mpbird | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ ( ◡ 𝐹 “ 𝐵 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝐵 ) |