This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 25-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovif12 | ⊢ ( if ( 𝜑 , 𝐴 , 𝐵 ) 𝐹 if ( 𝜑 , 𝐶 , 𝐷 ) ) = if ( 𝜑 , ( 𝐴 𝐹 𝐶 ) , ( 𝐵 𝐹 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue | ⊢ ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ) | |
| 2 | iftrue | ⊢ ( 𝜑 → if ( 𝜑 , 𝐶 , 𝐷 ) = 𝐶 ) | |
| 3 | 1 2 | oveq12d | ⊢ ( 𝜑 → ( if ( 𝜑 , 𝐴 , 𝐵 ) 𝐹 if ( 𝜑 , 𝐶 , 𝐷 ) ) = ( 𝐴 𝐹 𝐶 ) ) |
| 4 | iftrue | ⊢ ( 𝜑 → if ( 𝜑 , ( 𝐴 𝐹 𝐶 ) , ( 𝐵 𝐹 𝐷 ) ) = ( 𝐴 𝐹 𝐶 ) ) | |
| 5 | 3 4 | eqtr4d | ⊢ ( 𝜑 → ( if ( 𝜑 , 𝐴 , 𝐵 ) 𝐹 if ( 𝜑 , 𝐶 , 𝐷 ) ) = if ( 𝜑 , ( 𝐴 𝐹 𝐶 ) , ( 𝐵 𝐹 𝐷 ) ) ) |
| 6 | iffalse | ⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) | |
| 7 | iffalse | ⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐶 , 𝐷 ) = 𝐷 ) | |
| 8 | 6 7 | oveq12d | ⊢ ( ¬ 𝜑 → ( if ( 𝜑 , 𝐴 , 𝐵 ) 𝐹 if ( 𝜑 , 𝐶 , 𝐷 ) ) = ( 𝐵 𝐹 𝐷 ) ) |
| 9 | iffalse | ⊢ ( ¬ 𝜑 → if ( 𝜑 , ( 𝐴 𝐹 𝐶 ) , ( 𝐵 𝐹 𝐷 ) ) = ( 𝐵 𝐹 𝐷 ) ) | |
| 10 | 8 9 | eqtr4d | ⊢ ( ¬ 𝜑 → ( if ( 𝜑 , 𝐴 , 𝐵 ) 𝐹 if ( 𝜑 , 𝐶 , 𝐷 ) ) = if ( 𝜑 , ( 𝐴 𝐹 𝐶 ) , ( 𝐵 𝐹 𝐷 ) ) ) |
| 11 | 5 10 | pm2.61i | ⊢ ( if ( 𝜑 , 𝐴 , 𝐵 ) 𝐹 if ( 𝜑 , 𝐶 , 𝐷 ) ) = if ( 𝜑 , ( 𝐴 𝐹 𝐶 ) , ( 𝐵 𝐹 𝐷 ) ) |