This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limcmpt.a | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | |
| limcmpt.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| limcmpt.f | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝐷 ∈ ℂ ) | ||
| limcmpt.j | ⊢ 𝐽 = ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) | ||
| limcmpt.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| Assertion | limcmpt | ⊢ ( 𝜑 → ( 𝐶 ∈ ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) limℂ 𝐵 ) ↔ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , 𝐷 ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcmpt.a | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | |
| 2 | limcmpt.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | limcmpt.f | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝐷 ∈ ℂ ) | |
| 4 | limcmpt.j | ⊢ 𝐽 = ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) | |
| 5 | limcmpt.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 6 | nfcv | ⊢ Ⅎ 𝑦 if ( 𝑧 = 𝐵 , 𝐶 , ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑧 ) ) | |
| 7 | nfv | ⊢ Ⅎ 𝑧 𝑦 = 𝐵 | |
| 8 | nfcv | ⊢ Ⅎ 𝑧 𝐶 | |
| 9 | nffvmpt1 | ⊢ Ⅎ 𝑧 ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑦 ) | |
| 10 | 7 8 9 | nfif | ⊢ Ⅎ 𝑧 if ( 𝑦 = 𝐵 , 𝐶 , ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑦 ) ) |
| 11 | eqeq1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 = 𝐵 ↔ 𝑦 = 𝐵 ) ) | |
| 12 | fveq2 | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑧 ) = ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑦 ) ) | |
| 13 | 11 12 | ifbieq2d | ⊢ ( 𝑧 = 𝑦 → if ( 𝑧 = 𝐵 , 𝐶 , ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑧 ) ) = if ( 𝑦 = 𝐵 , 𝐶 , ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑦 ) ) ) |
| 14 | 6 10 13 | cbvmpt | ⊢ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑧 ) ) ) = ( 𝑦 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑦 = 𝐵 , 𝐶 , ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑦 ) ) ) |
| 15 | 3 | fmpttd | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) : 𝐴 ⟶ ℂ ) |
| 16 | 4 5 14 15 1 2 | ellimc | ⊢ ( 𝜑 → ( 𝐶 ∈ ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) limℂ 𝐵 ) ↔ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 17 | elun | ⊢ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ ( 𝑧 ∈ 𝐴 ∨ 𝑧 ∈ { 𝐵 } ) ) | |
| 18 | velsn | ⊢ ( 𝑧 ∈ { 𝐵 } ↔ 𝑧 = 𝐵 ) | |
| 19 | 18 | orbi2i | ⊢ ( ( 𝑧 ∈ 𝐴 ∨ 𝑧 ∈ { 𝐵 } ) ↔ ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵 ) ) |
| 20 | 17 19 | bitri | ⊢ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵 ) ) |
| 21 | pm5.61 | ⊢ ( ( ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵 ) ∧ ¬ 𝑧 = 𝐵 ) ↔ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 = 𝐵 ) ) | |
| 22 | 21 | simplbi | ⊢ ( ( ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵 ) ∧ ¬ 𝑧 = 𝐵 ) → 𝑧 ∈ 𝐴 ) |
| 23 | 20 22 | sylanb | ⊢ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ∧ ¬ 𝑧 = 𝐵 ) → 𝑧 ∈ 𝐴 ) |
| 24 | 23 3 | sylan2 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ∧ ¬ 𝑧 = 𝐵 ) ) → 𝐷 ∈ ℂ ) |
| 25 | eqid | ⊢ ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) = ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) | |
| 26 | 25 | fvmpt2 | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝐷 ∈ ℂ ) → ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑧 ) = 𝐷 ) |
| 27 | 23 24 26 | syl2an2 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ∧ ¬ 𝑧 = 𝐵 ) ) → ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑧 ) = 𝐷 ) |
| 28 | 27 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ¬ 𝑧 = 𝐵 ) → ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑧 ) = 𝐷 ) |
| 29 | 28 | ifeq2da | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → if ( 𝑧 = 𝐵 , 𝐶 , ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑧 ) ) = if ( 𝑧 = 𝐵 , 𝐶 , 𝐷 ) ) |
| 30 | 29 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , 𝐷 ) ) ) |
| 31 | 30 | eleq1d | ⊢ ( 𝜑 → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ↔ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , 𝐷 ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 32 | 16 31 | bitrd | ⊢ ( 𝜑 → ( 𝐶 ∈ ( ( 𝑧 ∈ 𝐴 ↦ 𝐷 ) limℂ 𝐵 ) ↔ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , 𝐷 ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |