This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of point-continuity in the parent topology and point-continuity in a subspace. (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnprest.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| cnprest.2 | ⊢ 𝑌 = ∪ 𝐾 | ||
| Assertion | cnprest2 | ⊢ ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ 𝐹 ∈ ( ( 𝐽 CnP ( 𝐾 ↾t 𝐵 ) ) ‘ 𝑃 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnprest.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | cnprest.2 | ⊢ 𝑌 = ∪ 𝐾 | |
| 3 | cnptop1 | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝐽 ∈ Top ) | |
| 4 | 1 | cnprcl | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝑃 ∈ 𝑋 ) |
| 5 | 3 4 | jca | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) |
| 6 | 5 | a1i | ⊢ ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) ) |
| 7 | cnptop1 | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP ( 𝐾 ↾t 𝐵 ) ) ‘ 𝑃 ) → 𝐽 ∈ Top ) | |
| 8 | 1 | cnprcl | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP ( 𝐾 ↾t 𝐵 ) ) ‘ 𝑃 ) → 𝑃 ∈ 𝑋 ) |
| 9 | 7 8 | jca | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP ( 𝐾 ↾t 𝐵 ) ) ‘ 𝑃 ) → ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) |
| 10 | 9 | a1i | ⊢ ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ( 𝐹 ∈ ( ( 𝐽 CnP ( 𝐾 ↾t 𝐵 ) ) ‘ 𝑃 ) → ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) ) |
| 11 | simpl2 | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → 𝐹 : 𝑋 ⟶ 𝐵 ) | |
| 12 | simprr | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → 𝑃 ∈ 𝑋 ) | |
| 13 | 11 12 | ffvelcdmd | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝐵 ) |
| 14 | 13 | biantrud | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑥 ↔ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐵 ) ) ) |
| 15 | elin | ⊢ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 𝑥 ∩ 𝐵 ) ↔ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐵 ) ) | |
| 16 | 14 15 | bitr4di | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑥 ↔ ( 𝐹 ‘ 𝑃 ) ∈ ( 𝑥 ∩ 𝐵 ) ) ) |
| 17 | imassrn | ⊢ ( 𝐹 “ 𝑦 ) ⊆ ran 𝐹 | |
| 18 | 11 | frnd | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ran 𝐹 ⊆ 𝐵 ) |
| 19 | 17 18 | sstrid | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( 𝐹 “ 𝑦 ) ⊆ 𝐵 ) |
| 20 | 19 | biantrud | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ↔ ( ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝐵 ) ) ) |
| 21 | ssin | ⊢ ( ( ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝐵 ) ↔ ( 𝐹 “ 𝑦 ) ⊆ ( 𝑥 ∩ 𝐵 ) ) | |
| 22 | 20 21 | bitrdi | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ↔ ( 𝐹 “ 𝑦 ) ⊆ ( 𝑥 ∩ 𝐵 ) ) ) |
| 23 | 22 | anbi2d | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ↔ ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ ( 𝑥 ∩ 𝐵 ) ) ) ) |
| 24 | 23 | rexbidv | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ↔ ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ ( 𝑥 ∩ 𝐵 ) ) ) ) |
| 25 | 16 24 | imbi12d | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑥 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) ↔ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 𝑥 ∩ 𝐵 ) → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ ( 𝑥 ∩ 𝐵 ) ) ) ) ) |
| 26 | 25 | ralbidv | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑥 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ ( 𝑥 ∩ 𝐵 ) → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ ( 𝑥 ∩ 𝐵 ) ) ) ) ) |
| 27 | vex | ⊢ 𝑥 ∈ V | |
| 28 | 27 | inex1 | ⊢ ( 𝑥 ∩ 𝐵 ) ∈ V |
| 29 | 28 | a1i | ⊢ ( ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) ∧ 𝑥 ∈ 𝐾 ) → ( 𝑥 ∩ 𝐵 ) ∈ V ) |
| 30 | simpl1 | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → 𝐾 ∈ Top ) | |
| 31 | uniexg | ⊢ ( 𝐾 ∈ Top → ∪ 𝐾 ∈ V ) | |
| 32 | 2 31 | eqeltrid | ⊢ ( 𝐾 ∈ Top → 𝑌 ∈ V ) |
| 33 | 30 32 | syl | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → 𝑌 ∈ V ) |
| 34 | simpl3 | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → 𝐵 ⊆ 𝑌 ) | |
| 35 | 33 34 | ssexd | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → 𝐵 ∈ V ) |
| 36 | elrest | ⊢ ( ( 𝐾 ∈ Top ∧ 𝐵 ∈ V ) → ( 𝑧 ∈ ( 𝐾 ↾t 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐾 𝑧 = ( 𝑥 ∩ 𝐵 ) ) ) | |
| 37 | 30 35 36 | syl2anc | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( 𝑧 ∈ ( 𝐾 ↾t 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐾 𝑧 = ( 𝑥 ∩ 𝐵 ) ) ) |
| 38 | eleq2 | ⊢ ( 𝑧 = ( 𝑥 ∩ 𝐵 ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑃 ) ∈ ( 𝑥 ∩ 𝐵 ) ) ) | |
| 39 | sseq2 | ⊢ ( 𝑧 = ( 𝑥 ∩ 𝐵 ) → ( ( 𝐹 “ 𝑦 ) ⊆ 𝑧 ↔ ( 𝐹 “ 𝑦 ) ⊆ ( 𝑥 ∩ 𝐵 ) ) ) | |
| 40 | 39 | anbi2d | ⊢ ( 𝑧 = ( 𝑥 ∩ 𝐵 ) → ( ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑧 ) ↔ ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ ( 𝑥 ∩ 𝐵 ) ) ) ) |
| 41 | 40 | rexbidv | ⊢ ( 𝑧 = ( 𝑥 ∩ 𝐵 ) → ( ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑧 ) ↔ ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ ( 𝑥 ∩ 𝐵 ) ) ) ) |
| 42 | 38 41 | imbi12d | ⊢ ( 𝑧 = ( 𝑥 ∩ 𝐵 ) → ( ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑧 ) ) ↔ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 𝑥 ∩ 𝐵 ) → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ ( 𝑥 ∩ 𝐵 ) ) ) ) ) |
| 43 | 42 | adantl | ⊢ ( ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) ∧ 𝑧 = ( 𝑥 ∩ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑧 ) ) ↔ ( ( 𝐹 ‘ 𝑃 ) ∈ ( 𝑥 ∩ 𝐵 ) → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ ( 𝑥 ∩ 𝐵 ) ) ) ) ) |
| 44 | 29 37 43 | ralxfr2d | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( ∀ 𝑧 ∈ ( 𝐾 ↾t 𝐵 ) ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ ( 𝑥 ∩ 𝐵 ) → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ ( 𝑥 ∩ 𝐵 ) ) ) ) ) |
| 45 | 26 44 | bitr4d | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑥 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) ↔ ∀ 𝑧 ∈ ( 𝐾 ↾t 𝐵 ) ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑧 ) ) ) ) |
| 46 | 11 34 | fssd | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 47 | simprl | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → 𝐽 ∈ Top ) | |
| 48 | 1 2 | iscnp2 | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑥 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) ) ) ) |
| 49 | 48 | baib | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑥 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) ) ) ) |
| 50 | 47 30 12 49 | syl3anc | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑥 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) ) ) ) |
| 51 | 46 50 | mpbirand | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ∀ 𝑥 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑥 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) ) ) |
| 52 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 53 | 47 52 | sylib | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 54 | 2 | toptopon | ⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 55 | 30 54 | sylib | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 56 | resttopon | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐵 ⊆ 𝑌 ) → ( 𝐾 ↾t 𝐵 ) ∈ ( TopOn ‘ 𝐵 ) ) | |
| 57 | 55 34 56 | syl2anc | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( 𝐾 ↾t 𝐵 ) ∈ ( TopOn ‘ 𝐵 ) ) |
| 58 | iscnp | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐾 ↾t 𝐵 ) ∈ ( TopOn ‘ 𝐵 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP ( 𝐾 ↾t 𝐵 ) ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝐵 ∧ ∀ 𝑧 ∈ ( 𝐾 ↾t 𝐵 ) ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑧 ) ) ) ) ) | |
| 59 | 53 57 12 58 | syl3anc | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( 𝐹 ∈ ( ( 𝐽 CnP ( 𝐾 ↾t 𝐵 ) ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝐵 ∧ ∀ 𝑧 ∈ ( 𝐾 ↾t 𝐵 ) ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑧 ) ) ) ) ) |
| 60 | 11 59 | mpbirand | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( 𝐹 ∈ ( ( 𝐽 CnP ( 𝐾 ↾t 𝐵 ) ) ‘ 𝑃 ) ↔ ∀ 𝑧 ∈ ( 𝐾 ↾t 𝐵 ) ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑧 ) ) ) ) |
| 61 | 45 51 60 | 3bitr4d | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ 𝐹 ∈ ( ( 𝐽 CnP ( 𝐾 ↾t 𝐵 ) ) ‘ 𝑃 ) ) ) |
| 62 | 61 | ex | ⊢ ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ( ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ 𝐹 ∈ ( ( 𝐽 CnP ( 𝐾 ↾t 𝐵 ) ) ‘ 𝑃 ) ) ) ) |
| 63 | 6 10 62 | pm5.21ndd | ⊢ ( ( 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ 𝐹 ∈ ( ( 𝐽 CnP ( 𝐾 ↾t 𝐵 ) ) ‘ 𝑃 ) ) ) |