This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two functions are continuous at D , then the ordered pair of them is continuous at D into the product topology. (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | txcnp.4 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| txcnp.5 | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| txcnp.6 | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) | ||
| txcnp.7 | ⊢ ( 𝜑 → 𝐷 ∈ 𝑋 ) | ||
| txcnp.8 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐷 ) ) | ||
| txcnp.9 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( ( 𝐽 CnP 𝐿 ) ‘ 𝐷 ) ) | ||
| Assertion | txcnp | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ∈ ( ( 𝐽 CnP ( 𝐾 ×t 𝐿 ) ) ‘ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txcnp.4 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | txcnp.5 | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 3 | txcnp.6 | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) | |
| 4 | txcnp.7 | ⊢ ( 𝜑 → 𝐷 ∈ 𝑋 ) | |
| 5 | txcnp.8 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐷 ) ) | |
| 6 | txcnp.9 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( ( 𝐽 CnP 𝐿 ) ‘ 𝐷 ) ) | |
| 7 | cnpf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐷 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ 𝑌 ) | |
| 8 | 1 2 5 7 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ 𝑌 ) |
| 9 | 8 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑌 ) |
| 10 | cnpf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( TopOn ‘ 𝑍 ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( ( 𝐽 CnP 𝐿 ) ‘ 𝐷 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ 𝑍 ) | |
| 11 | 1 3 6 10 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ 𝑍 ) |
| 12 | 11 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑍 ) |
| 13 | 9 12 | opelxpd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 〈 𝐴 , 𝐵 〉 ∈ ( 𝑌 × 𝑍 ) ) |
| 14 | 13 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) : 𝑋 ⟶ ( 𝑌 × 𝑍 ) ) |
| 15 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 16 | opex | ⊢ 〈 𝐴 , 𝐵 〉 ∈ V | |
| 17 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) = ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) | |
| 18 | 17 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 〈 𝐴 , 𝐵 〉 ∈ V ) → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑥 ) = 〈 𝐴 , 𝐵 〉 ) |
| 19 | 15 16 18 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑥 ) = 〈 𝐴 , 𝐵 〉 ) |
| 20 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) | |
| 21 | 20 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 22 | 15 9 21 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 23 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) | |
| 24 | 23 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝐵 ∈ 𝑍 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 25 | 15 12 24 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 26 | 22 25 | opeq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 = 〈 𝐴 , 𝐵 〉 ) |
| 27 | 19 26 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑥 ) = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) |
| 28 | 27 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑥 ) = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) |
| 29 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) | |
| 30 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) | |
| 31 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) | |
| 32 | 30 31 | nfop | ⊢ Ⅎ 𝑥 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) 〉 |
| 33 | 29 32 | nfeq | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) 〉 |
| 34 | fveq2 | ⊢ ( 𝑥 = 𝐷 → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ) | |
| 35 | fveq2 | ⊢ ( 𝑥 = 𝐷 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) | |
| 36 | fveq2 | ⊢ ( 𝑥 = 𝐷 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) ) | |
| 37 | 35 36 | opeq12d | ⊢ ( 𝑥 = 𝐷 → 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) 〉 ) |
| 38 | 34 37 | eqeq12d | ⊢ ( 𝑥 = 𝐷 → ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑥 ) = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ↔ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) 〉 ) ) |
| 39 | 33 38 | rspc | ⊢ ( 𝐷 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑥 ) = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) 〉 ) ) |
| 40 | 4 28 39 | sylc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) 〉 ) |
| 41 | 40 | eleq1d | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ∈ ( 𝑣 × 𝑤 ) ↔ 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) 〉 ∈ ( 𝑣 × 𝑤 ) ) ) |
| 42 | 41 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ∈ ( 𝑣 × 𝑤 ) ↔ 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) 〉 ∈ ( 𝑣 × 𝑤 ) ) ) |
| 43 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ 𝑣 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) ∈ 𝑤 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐷 ) ) |
| 44 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ 𝑣 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) ∈ 𝑤 ) ) → 𝑣 ∈ 𝐾 ) | |
| 45 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ 𝑣 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) ∈ 𝑤 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ 𝑣 ) | |
| 46 | cnpimaex | ⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐷 ) ∧ 𝑣 ∈ 𝐾 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ 𝑣 ) → ∃ 𝑟 ∈ 𝐽 ( 𝐷 ∈ 𝑟 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ) ) | |
| 47 | 43 44 45 46 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ 𝑣 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) ∈ 𝑤 ) ) → ∃ 𝑟 ∈ 𝐽 ( 𝐷 ∈ 𝑟 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ) ) |
| 48 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ 𝑣 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) ∈ 𝑤 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( ( 𝐽 CnP 𝐿 ) ‘ 𝐷 ) ) |
| 49 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ 𝑣 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) ∈ 𝑤 ) ) → 𝑤 ∈ 𝐿 ) | |
| 50 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ 𝑣 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) ∈ 𝑤 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) ∈ 𝑤 ) | |
| 51 | cnpimaex | ⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( ( 𝐽 CnP 𝐿 ) ‘ 𝐷 ) ∧ 𝑤 ∈ 𝐿 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) ∈ 𝑤 ) → ∃ 𝑠 ∈ 𝐽 ( 𝐷 ∈ 𝑠 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) | |
| 52 | 48 49 50 51 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ 𝑣 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) ∈ 𝑤 ) ) → ∃ 𝑠 ∈ 𝐽 ( 𝐷 ∈ 𝑠 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) |
| 53 | 47 52 | jca | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ 𝑣 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) ∈ 𝑤 ) ) → ( ∃ 𝑟 ∈ 𝐽 ( 𝐷 ∈ 𝑟 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ) ∧ ∃ 𝑠 ∈ 𝐽 ( 𝐷 ∈ 𝑠 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) ) |
| 54 | 53 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) → ( ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ 𝑣 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) ∈ 𝑤 ) → ( ∃ 𝑟 ∈ 𝐽 ( 𝐷 ∈ 𝑟 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ) ∧ ∃ 𝑠 ∈ 𝐽 ( 𝐷 ∈ 𝑠 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) ) ) |
| 55 | opelxp | ⊢ ( 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) 〉 ∈ ( 𝑣 × 𝑤 ) ↔ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ 𝑣 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) ∈ 𝑤 ) ) | |
| 56 | reeanv | ⊢ ( ∃ 𝑟 ∈ 𝐽 ∃ 𝑠 ∈ 𝐽 ( ( 𝐷 ∈ 𝑟 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ) ∧ ( 𝐷 ∈ 𝑠 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) ↔ ( ∃ 𝑟 ∈ 𝐽 ( 𝐷 ∈ 𝑟 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ) ∧ ∃ 𝑠 ∈ 𝐽 ( 𝐷 ∈ 𝑠 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) ) | |
| 57 | 54 55 56 | 3imtr4g | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) → ( 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) 〉 ∈ ( 𝑣 × 𝑤 ) → ∃ 𝑟 ∈ 𝐽 ∃ 𝑠 ∈ 𝐽 ( ( 𝐷 ∈ 𝑟 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ) ∧ ( 𝐷 ∈ 𝑠 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) ) ) |
| 58 | 42 57 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ∈ ( 𝑣 × 𝑤 ) → ∃ 𝑟 ∈ 𝐽 ∃ 𝑠 ∈ 𝐽 ( ( 𝐷 ∈ 𝑟 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ) ∧ ( 𝐷 ∈ 𝑠 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) ) ) |
| 59 | an4 | ⊢ ( ( ( 𝐷 ∈ 𝑟 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ) ∧ ( 𝐷 ∈ 𝑠 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) ↔ ( ( 𝐷 ∈ 𝑟 ∧ 𝐷 ∈ 𝑠 ) ∧ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) ) | |
| 60 | elin | ⊢ ( 𝐷 ∈ ( 𝑟 ∩ 𝑠 ) ↔ ( 𝐷 ∈ 𝑟 ∧ 𝐷 ∈ 𝑠 ) ) | |
| 61 | 60 | biimpri | ⊢ ( ( 𝐷 ∈ 𝑟 ∧ 𝐷 ∈ 𝑠 ) → 𝐷 ∈ ( 𝑟 ∩ 𝑠 ) ) |
| 62 | 61 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) ) → ( ( 𝐷 ∈ 𝑟 ∧ 𝐷 ∈ 𝑠 ) → 𝐷 ∈ ( 𝑟 ∩ 𝑠 ) ) ) |
| 63 | simpl | ⊢ ( ( 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) → 𝑟 ∈ 𝐽 ) | |
| 64 | toponss | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑟 ∈ 𝐽 ) → 𝑟 ⊆ 𝑋 ) | |
| 65 | 1 63 64 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) ) → 𝑟 ⊆ 𝑋 ) |
| 66 | ssinss1 | ⊢ ( 𝑟 ⊆ 𝑋 → ( 𝑟 ∩ 𝑠 ) ⊆ 𝑋 ) | |
| 67 | 66 | adantl | ⊢ ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) → ( 𝑟 ∩ 𝑠 ) ⊆ 𝑋 ) |
| 68 | 67 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → 𝑡 ∈ 𝑋 ) |
| 69 | 28 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑥 ) = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) |
| 70 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑡 ) | |
| 71 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) | |
| 72 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑡 ) | |
| 73 | 71 72 | nfop | ⊢ Ⅎ 𝑥 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑡 ) 〉 |
| 74 | 70 73 | nfeq | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑡 ) = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑡 ) 〉 |
| 75 | fveq2 | ⊢ ( 𝑥 = 𝑡 → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑡 ) ) | |
| 76 | fveq2 | ⊢ ( 𝑥 = 𝑡 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) ) | |
| 77 | fveq2 | ⊢ ( 𝑥 = 𝑡 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑡 ) ) | |
| 78 | 76 77 | opeq12d | ⊢ ( 𝑥 = 𝑡 → 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑡 ) 〉 ) |
| 79 | 75 78 | eqeq12d | ⊢ ( 𝑥 = 𝑡 → ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑥 ) = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ↔ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑡 ) = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑡 ) 〉 ) ) |
| 80 | 74 79 | rspc | ⊢ ( 𝑡 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑥 ) = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑡 ) = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑡 ) 〉 ) ) |
| 81 | 68 69 80 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑡 ) = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑡 ) 〉 ) |
| 82 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) | |
| 83 | 82 | elin1d | ⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → 𝑡 ∈ 𝑟 ) |
| 84 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ 𝑌 ) |
| 85 | 84 | ffund | ⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → Fun ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
| 86 | 67 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → ( 𝑟 ∩ 𝑠 ) ⊆ 𝑋 ) |
| 87 | 84 | fdmd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → dom ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = 𝑋 ) |
| 88 | 86 87 | sseqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → ( 𝑟 ∩ 𝑠 ) ⊆ dom ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
| 89 | 88 82 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → 𝑡 ∈ dom ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
| 90 | funfvima | ⊢ ( ( Fun ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∧ 𝑡 ∈ dom ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) → ( 𝑡 ∈ 𝑟 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) ∈ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ) ) | |
| 91 | 85 89 90 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → ( 𝑡 ∈ 𝑟 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) ∈ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ) ) |
| 92 | 83 91 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) ∈ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ) |
| 93 | 82 | elin2d | ⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → 𝑡 ∈ 𝑠 ) |
| 94 | 11 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ 𝑍 ) |
| 95 | 94 | ffund | ⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → Fun ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
| 96 | 94 | fdmd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = 𝑋 ) |
| 97 | 86 96 | sseqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → ( 𝑟 ∩ 𝑠 ) ⊆ dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
| 98 | 97 82 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → 𝑡 ∈ dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
| 99 | funfvima | ⊢ ( ( Fun ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∧ 𝑡 ∈ dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) → ( 𝑡 ∈ 𝑠 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑡 ) ∈ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) ) | |
| 100 | 95 98 99 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → ( 𝑡 ∈ 𝑠 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑡 ) ∈ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) ) |
| 101 | 93 100 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑡 ) ∈ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) |
| 102 | 92 101 | opelxpd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑡 ) 〉 ∈ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) × ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) ) |
| 103 | 81 102 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑡 ) ∈ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) × ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) ) |
| 104 | 103 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) → ∀ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑡 ) ∈ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) × ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) ) |
| 105 | 14 | ffund | ⊢ ( 𝜑 → Fun ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ) |
| 106 | 105 | adantr | ⊢ ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) → Fun ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ) |
| 107 | 14 | fdmd | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) = 𝑋 ) |
| 108 | 107 | adantr | ⊢ ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) → dom ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) = 𝑋 ) |
| 109 | 67 108 | sseqtrrd | ⊢ ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) → ( 𝑟 ∩ 𝑠 ) ⊆ dom ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ) |
| 110 | funimass4 | ⊢ ( ( Fun ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ∧ ( 𝑟 ∩ 𝑠 ) ⊆ dom ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ⊆ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) × ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) ↔ ∀ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑡 ) ∈ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) × ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) ) ) | |
| 111 | 106 109 110 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ⊆ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) × ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) ↔ ∀ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑡 ) ∈ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) × ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) ) ) |
| 112 | 104 111 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ⊆ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) × ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) ) |
| 113 | 65 112 | syldan | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ⊆ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) × ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) ) |
| 114 | 113 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ⊆ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) × ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) ) |
| 115 | xpss12 | ⊢ ( ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) × ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) ⊆ ( 𝑣 × 𝑤 ) ) | |
| 116 | sstr2 | ⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ⊆ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) × ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) → ( ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) × ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) ⊆ ( 𝑣 × 𝑤 ) → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ⊆ ( 𝑣 × 𝑤 ) ) ) | |
| 117 | 114 115 116 | syl2im | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) ) → ( ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ⊆ ( 𝑣 × 𝑤 ) ) ) |
| 118 | 62 117 | anim12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) ) → ( ( ( 𝐷 ∈ 𝑟 ∧ 𝐷 ∈ 𝑠 ) ∧ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) → ( 𝐷 ∈ ( 𝑟 ∩ 𝑠 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ⊆ ( 𝑣 × 𝑤 ) ) ) ) |
| 119 | 59 118 | biimtrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) ) → ( ( ( 𝐷 ∈ 𝑟 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ) ∧ ( 𝐷 ∈ 𝑠 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) → ( 𝐷 ∈ ( 𝑟 ∩ 𝑠 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ⊆ ( 𝑣 × 𝑤 ) ) ) ) |
| 120 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 121 | 1 120 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 122 | inopn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) → ( 𝑟 ∩ 𝑠 ) ∈ 𝐽 ) | |
| 123 | 122 | 3expb | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) ) → ( 𝑟 ∩ 𝑠 ) ∈ 𝐽 ) |
| 124 | 121 123 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) ) → ( 𝑟 ∩ 𝑠 ) ∈ 𝐽 ) |
| 125 | 124 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) ) → ( 𝑟 ∩ 𝑠 ) ∈ 𝐽 ) |
| 126 | 119 125 | jctild | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) ) → ( ( ( 𝐷 ∈ 𝑟 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ) ∧ ( 𝐷 ∈ 𝑠 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) → ( ( 𝑟 ∩ 𝑠 ) ∈ 𝐽 ∧ ( 𝐷 ∈ ( 𝑟 ∩ 𝑠 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ⊆ ( 𝑣 × 𝑤 ) ) ) ) ) |
| 127 | 126 | expimpd | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) → ( ( ( 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) ∧ ( ( 𝐷 ∈ 𝑟 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ) ∧ ( 𝐷 ∈ 𝑠 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) ) → ( ( 𝑟 ∩ 𝑠 ) ∈ 𝐽 ∧ ( 𝐷 ∈ ( 𝑟 ∩ 𝑠 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ⊆ ( 𝑣 × 𝑤 ) ) ) ) ) |
| 128 | eleq2 | ⊢ ( 𝑧 = ( 𝑟 ∩ 𝑠 ) → ( 𝐷 ∈ 𝑧 ↔ 𝐷 ∈ ( 𝑟 ∩ 𝑠 ) ) ) | |
| 129 | imaeq2 | ⊢ ( 𝑧 = ( 𝑟 ∩ 𝑠 ) → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) = ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ) | |
| 130 | 129 | sseq1d | ⊢ ( 𝑧 = ( 𝑟 ∩ 𝑠 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ ( 𝑣 × 𝑤 ) ↔ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ⊆ ( 𝑣 × 𝑤 ) ) ) |
| 131 | 128 130 | anbi12d | ⊢ ( 𝑧 = ( 𝑟 ∩ 𝑠 ) → ( ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ ( 𝑣 × 𝑤 ) ) ↔ ( 𝐷 ∈ ( 𝑟 ∩ 𝑠 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ⊆ ( 𝑣 × 𝑤 ) ) ) ) |
| 132 | 131 | rspcev | ⊢ ( ( ( 𝑟 ∩ 𝑠 ) ∈ 𝐽 ∧ ( 𝐷 ∈ ( 𝑟 ∩ 𝑠 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ⊆ ( 𝑣 × 𝑤 ) ) ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ ( 𝑣 × 𝑤 ) ) ) |
| 133 | 127 132 | syl6 | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) → ( ( ( 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) ∧ ( ( 𝐷 ∈ 𝑟 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ) ∧ ( 𝐷 ∈ 𝑠 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ ( 𝑣 × 𝑤 ) ) ) ) |
| 134 | 133 | expd | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) → ( ( 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) → ( ( ( 𝐷 ∈ 𝑟 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ) ∧ ( 𝐷 ∈ 𝑠 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ ( 𝑣 × 𝑤 ) ) ) ) ) |
| 135 | 134 | rexlimdvv | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) → ( ∃ 𝑟 ∈ 𝐽 ∃ 𝑠 ∈ 𝐽 ( ( 𝐷 ∈ 𝑟 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ) ∧ ( 𝐷 ∈ 𝑠 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ ( 𝑣 × 𝑤 ) ) ) ) |
| 136 | 58 135 | syld | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ∈ ( 𝑣 × 𝑤 ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ ( 𝑣 × 𝑤 ) ) ) ) |
| 137 | 136 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑣 ∈ 𝐾 ∀ 𝑤 ∈ 𝐿 ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ∈ ( 𝑣 × 𝑤 ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ ( 𝑣 × 𝑤 ) ) ) ) |
| 138 | vex | ⊢ 𝑣 ∈ V | |
| 139 | vex | ⊢ 𝑤 ∈ V | |
| 140 | 138 139 | xpex | ⊢ ( 𝑣 × 𝑤 ) ∈ V |
| 141 | 140 | rgen2w | ⊢ ∀ 𝑣 ∈ 𝐾 ∀ 𝑤 ∈ 𝐿 ( 𝑣 × 𝑤 ) ∈ V |
| 142 | eqid | ⊢ ( 𝑣 ∈ 𝐾 , 𝑤 ∈ 𝐿 ↦ ( 𝑣 × 𝑤 ) ) = ( 𝑣 ∈ 𝐾 , 𝑤 ∈ 𝐿 ↦ ( 𝑣 × 𝑤 ) ) | |
| 143 | eleq2 | ⊢ ( 𝑦 = ( 𝑣 × 𝑤 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ∈ 𝑦 ↔ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ∈ ( 𝑣 × 𝑤 ) ) ) | |
| 144 | sseq2 | ⊢ ( 𝑦 = ( 𝑣 × 𝑤 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ 𝑦 ↔ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ ( 𝑣 × 𝑤 ) ) ) | |
| 145 | 144 | anbi2d | ⊢ ( 𝑦 = ( 𝑣 × 𝑤 ) → ( ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ 𝑦 ) ↔ ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ ( 𝑣 × 𝑤 ) ) ) ) |
| 146 | 145 | rexbidv | ⊢ ( 𝑦 = ( 𝑣 × 𝑤 ) → ( ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ 𝑦 ) ↔ ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ ( 𝑣 × 𝑤 ) ) ) ) |
| 147 | 143 146 | imbi12d | ⊢ ( 𝑦 = ( 𝑣 × 𝑤 ) → ( ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ∈ 𝑦 → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ 𝑦 ) ) ↔ ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ∈ ( 𝑣 × 𝑤 ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ ( 𝑣 × 𝑤 ) ) ) ) ) |
| 148 | 142 147 | ralrnmpo | ⊢ ( ∀ 𝑣 ∈ 𝐾 ∀ 𝑤 ∈ 𝐿 ( 𝑣 × 𝑤 ) ∈ V → ( ∀ 𝑦 ∈ ran ( 𝑣 ∈ 𝐾 , 𝑤 ∈ 𝐿 ↦ ( 𝑣 × 𝑤 ) ) ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ∈ 𝑦 → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ 𝑦 ) ) ↔ ∀ 𝑣 ∈ 𝐾 ∀ 𝑤 ∈ 𝐿 ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ∈ ( 𝑣 × 𝑤 ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ ( 𝑣 × 𝑤 ) ) ) ) ) |
| 149 | 141 148 | ax-mp | ⊢ ( ∀ 𝑦 ∈ ran ( 𝑣 ∈ 𝐾 , 𝑤 ∈ 𝐿 ↦ ( 𝑣 × 𝑤 ) ) ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ∈ 𝑦 → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ 𝑦 ) ) ↔ ∀ 𝑣 ∈ 𝐾 ∀ 𝑤 ∈ 𝐿 ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ∈ ( 𝑣 × 𝑤 ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ ( 𝑣 × 𝑤 ) ) ) ) |
| 150 | 137 149 | sylibr | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ran ( 𝑣 ∈ 𝐾 , 𝑤 ∈ 𝐿 ↦ ( 𝑣 × 𝑤 ) ) ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ∈ 𝑦 → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ 𝑦 ) ) ) |
| 151 | topontop | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝐾 ∈ Top ) | |
| 152 | 2 151 | syl | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 153 | topontop | ⊢ ( 𝐿 ∈ ( TopOn ‘ 𝑍 ) → 𝐿 ∈ Top ) | |
| 154 | 3 153 | syl | ⊢ ( 𝜑 → 𝐿 ∈ Top ) |
| 155 | eqid | ⊢ ran ( 𝑣 ∈ 𝐾 , 𝑤 ∈ 𝐿 ↦ ( 𝑣 × 𝑤 ) ) = ran ( 𝑣 ∈ 𝐾 , 𝑤 ∈ 𝐿 ↦ ( 𝑣 × 𝑤 ) ) | |
| 156 | 155 | txval | ⊢ ( ( 𝐾 ∈ Top ∧ 𝐿 ∈ Top ) → ( 𝐾 ×t 𝐿 ) = ( topGen ‘ ran ( 𝑣 ∈ 𝐾 , 𝑤 ∈ 𝐿 ↦ ( 𝑣 × 𝑤 ) ) ) ) |
| 157 | 152 154 156 | syl2anc | ⊢ ( 𝜑 → ( 𝐾 ×t 𝐿 ) = ( topGen ‘ ran ( 𝑣 ∈ 𝐾 , 𝑤 ∈ 𝐿 ↦ ( 𝑣 × 𝑤 ) ) ) ) |
| 158 | txtopon | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) → ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑌 × 𝑍 ) ) ) | |
| 159 | 2 3 158 | syl2anc | ⊢ ( 𝜑 → ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑌 × 𝑍 ) ) ) |
| 160 | 1 157 159 4 | tgcnp | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ∈ ( ( 𝐽 CnP ( 𝐾 ×t 𝐿 ) ) ‘ 𝐷 ) ↔ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) : 𝑋 ⟶ ( 𝑌 × 𝑍 ) ∧ ∀ 𝑦 ∈ ran ( 𝑣 ∈ 𝐾 , 𝑤 ∈ 𝐿 ↦ ( 𝑣 × 𝑤 ) ) ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ∈ 𝑦 → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ 𝑦 ) ) ) ) ) |
| 161 | 14 150 160 | mpbir2and | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ∈ ( ( 𝐽 CnP ( 𝐾 ×t 𝐿 ) ) ‘ 𝐷 ) ) |