This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of a function F continuous at P with a function continuous at ( FP ) is continuous at P . Proposition 2 of BourbakiTop1 p. I.9. (Contributed by FL, 16-Nov-2006) (Proof shortened by Mario Carneiro, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnpco | ⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → ( 𝐺 ∘ 𝐹 ) ∈ ( ( 𝐽 CnP 𝐿 ) ‘ 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnptop1 | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝐽 ∈ Top ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → 𝐽 ∈ Top ) |
| 3 | cnptop2 | ⊢ ( 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) → 𝐿 ∈ Top ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → 𝐿 ∈ Top ) |
| 5 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 6 | 5 | cnprcl | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝑃 ∈ ∪ 𝐽 ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → 𝑃 ∈ ∪ 𝐽 ) |
| 8 | 2 4 7 | 3jca | ⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → ( 𝐽 ∈ Top ∧ 𝐿 ∈ Top ∧ 𝑃 ∈ ∪ 𝐽 ) ) |
| 9 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 10 | eqid | ⊢ ∪ 𝐿 = ∪ 𝐿 | |
| 11 | 9 10 | cnpf | ⊢ ( 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) → 𝐺 : ∪ 𝐾 ⟶ ∪ 𝐿 ) |
| 12 | 11 | adantl | ⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → 𝐺 : ∪ 𝐾 ⟶ ∪ 𝐿 ) |
| 13 | 5 9 | cnpf | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 14 | 13 | adantr | ⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 15 | fco | ⊢ ( ( 𝐺 : ∪ 𝐾 ⟶ ∪ 𝐿 ∧ 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) → ( 𝐺 ∘ 𝐹 ) : ∪ 𝐽 ⟶ ∪ 𝐿 ) | |
| 16 | 12 14 15 | syl2anc | ⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → ( 𝐺 ∘ 𝐹 ) : ∪ 𝐽 ⟶ ∪ 𝐿 ) |
| 17 | simplr | ⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) → 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) | |
| 18 | simprl | ⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) → 𝑧 ∈ 𝐿 ) | |
| 19 | fvco3 | ⊢ ( ( 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ∧ 𝑃 ∈ ∪ 𝐽 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) ) | |
| 20 | 14 7 19 | syl2anc | ⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) ) |
| 21 | 20 | adantr | ⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) ) |
| 22 | simprr | ⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) | |
| 23 | 21 22 | eqeltrrd | ⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) ∈ 𝑧 ) |
| 24 | cnpimaex | ⊢ ( ( 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ∧ 𝑧 ∈ 𝐿 ∧ ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) ∈ 𝑧 ) → ∃ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) | |
| 25 | 17 18 23 24 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) → ∃ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) |
| 26 | simplll | ⊢ ( ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) ) → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) | |
| 27 | simprl | ⊢ ( ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) ) → 𝑦 ∈ 𝐾 ) | |
| 28 | simprrl | ⊢ ( ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ) | |
| 29 | cnpimaex | ⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝑦 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) | |
| 30 | 26 27 28 29 | syl3anc | ⊢ ( ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) |
| 31 | imaco | ⊢ ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) = ( 𝐺 “ ( 𝐹 “ 𝑥 ) ) | |
| 32 | imass2 | ⊢ ( ( 𝐹 “ 𝑥 ) ⊆ 𝑦 → ( 𝐺 “ ( 𝐹 “ 𝑥 ) ) ⊆ ( 𝐺 “ 𝑦 ) ) | |
| 33 | 31 32 | eqsstrid | ⊢ ( ( 𝐹 “ 𝑥 ) ⊆ 𝑦 → ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ ( 𝐺 “ 𝑦 ) ) |
| 34 | simprrr | ⊢ ( ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) ) → ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) | |
| 35 | sstr2 | ⊢ ( ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ ( 𝐺 “ 𝑦 ) → ( ( 𝐺 “ 𝑦 ) ⊆ 𝑧 → ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ 𝑧 ) ) | |
| 36 | 33 34 35 | syl2imc | ⊢ ( ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) ) → ( ( 𝐹 “ 𝑥 ) ⊆ 𝑦 → ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ 𝑧 ) ) |
| 37 | 36 | anim2d | ⊢ ( ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) ) → ( ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) → ( 𝑃 ∈ 𝑥 ∧ ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ 𝑧 ) ) ) |
| 38 | 37 | reximdv | ⊢ ( ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) ) → ( ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ 𝑧 ) ) ) |
| 39 | 30 38 | mpd | ⊢ ( ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) ∧ ( 𝑦 ∈ 𝐾 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ∧ ( 𝐺 “ 𝑦 ) ⊆ 𝑧 ) ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ 𝑧 ) ) |
| 40 | 25 39 | rexlimddv | ⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝑧 ∈ 𝐿 ∧ ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ 𝑧 ) ) |
| 41 | 40 | expr | ⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑧 ∈ 𝐿 ) → ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ 𝑧 ) ) ) |
| 42 | 41 | ralrimiva | ⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → ∀ 𝑧 ∈ 𝐿 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ 𝑧 ) ) ) |
| 43 | 16 42 | jca | ⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) : ∪ 𝐽 ⟶ ∪ 𝐿 ∧ ∀ 𝑧 ∈ 𝐿 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ 𝑧 ) ) ) ) |
| 44 | 5 10 | iscnp2 | ⊢ ( ( 𝐺 ∘ 𝐹 ) ∈ ( ( 𝐽 CnP 𝐿 ) ‘ 𝑃 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐿 ∈ Top ∧ 𝑃 ∈ ∪ 𝐽 ) ∧ ( ( 𝐺 ∘ 𝐹 ) : ∪ 𝐽 ⟶ ∪ 𝐿 ∧ ∀ 𝑧 ∈ 𝐿 ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑃 ) ∈ 𝑧 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( ( 𝐺 ∘ 𝐹 ) “ 𝑥 ) ⊆ 𝑧 ) ) ) ) ) |
| 45 | 8 43 44 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ∧ 𝐺 ∈ ( ( 𝐾 CnP 𝐿 ) ‘ ( 𝐹 ‘ 𝑃 ) ) ) → ( 𝐺 ∘ 𝐹 ) ∈ ( ( 𝐽 CnP 𝐿 ) ‘ 𝑃 ) ) |