This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lcmfdvds and lcmfunsn . These two theorems must be proven simultaneously by induction on the cardinality of a finite set Y , because they depend on each other. This can be seen by the two parts lcmfunsnlem1 and lcmfunsnlem2 of the induction step, each of them using both induction hypotheses. (Contributed by AV, 26-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmfunsnlem | ⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑌 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑌 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑌 ) lcm 𝑛 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 ⊆ ℤ ↔ ∅ ⊆ ℤ ) ) | |
| 2 | raleq | ⊢ ( 𝑥 = ∅ → ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 ↔ ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑘 ) ) | |
| 3 | fveq2 | ⊢ ( 𝑥 = ∅ → ( lcm ‘ 𝑥 ) = ( lcm ‘ ∅ ) ) | |
| 4 | 3 | breq1d | ⊢ ( 𝑥 = ∅ → ( ( lcm ‘ 𝑥 ) ∥ 𝑘 ↔ ( lcm ‘ ∅ ) ∥ 𝑘 ) ) |
| 5 | 2 4 | imbi12d | ⊢ ( 𝑥 = ∅ → ( ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ↔ ( ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑘 → ( lcm ‘ ∅ ) ∥ 𝑘 ) ) ) |
| 6 | 5 | ralbidv | ⊢ ( 𝑥 = ∅ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ↔ ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑘 → ( lcm ‘ ∅ ) ∥ 𝑘 ) ) ) |
| 7 | uneq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 ∪ { 𝑛 } ) = ( ∅ ∪ { 𝑛 } ) ) | |
| 8 | 7 | fveq2d | ⊢ ( 𝑥 = ∅ → ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( lcm ‘ ( ∅ ∪ { 𝑛 } ) ) ) |
| 9 | 3 | oveq1d | ⊢ ( 𝑥 = ∅ → ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) = ( ( lcm ‘ ∅ ) lcm 𝑛 ) ) |
| 10 | 8 9 | eqeq12d | ⊢ ( 𝑥 = ∅ → ( ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ↔ ( lcm ‘ ( ∅ ∪ { 𝑛 } ) ) = ( ( lcm ‘ ∅ ) lcm 𝑛 ) ) ) |
| 11 | 10 | ralbidv | ⊢ ( 𝑥 = ∅ → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ↔ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ∅ ∪ { 𝑛 } ) ) = ( ( lcm ‘ ∅ ) lcm 𝑛 ) ) ) |
| 12 | 6 11 | anbi12d | ⊢ ( 𝑥 = ∅ → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ) ↔ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑘 → ( lcm ‘ ∅ ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ∅ ∪ { 𝑛 } ) ) = ( ( lcm ‘ ∅ ) lcm 𝑛 ) ) ) ) |
| 13 | 1 12 | imbi12d | ⊢ ( 𝑥 = ∅ → ( ( 𝑥 ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ) ) ↔ ( ∅ ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑘 → ( lcm ‘ ∅ ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ∅ ∪ { 𝑛 } ) ) = ( ( lcm ‘ ∅ ) lcm 𝑛 ) ) ) ) ) |
| 14 | sseq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ ℤ ↔ 𝑦 ⊆ ℤ ) ) | |
| 15 | raleq | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 ↔ ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 ) ) | |
| 16 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( lcm ‘ 𝑥 ) = ( lcm ‘ 𝑦 ) ) | |
| 17 | 16 | breq1d | ⊢ ( 𝑥 = 𝑦 → ( ( lcm ‘ 𝑥 ) ∥ 𝑘 ↔ ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) |
| 18 | 15 17 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ↔ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ) |
| 19 | 18 | ralbidv | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ↔ ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ) |
| 20 | uneq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∪ { 𝑛 } ) = ( 𝑦 ∪ { 𝑛 } ) ) | |
| 21 | 20 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) ) |
| 22 | 16 | oveq1d | ⊢ ( 𝑥 = 𝑦 → ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) |
| 23 | 21 22 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ↔ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) |
| 24 | 23 | ralbidv | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ↔ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) |
| 25 | 19 24 | anbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ) ↔ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) |
| 26 | 14 25 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ) ) ↔ ( 𝑦 ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) |
| 27 | sseq1 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ⊆ ℤ ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) ) | |
| 28 | raleq | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 ↔ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 ) ) | |
| 29 | fveq2 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( lcm ‘ 𝑥 ) = ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) | |
| 30 | 29 | breq1d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( lcm ‘ 𝑥 ) ∥ 𝑘 ↔ ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) |
| 31 | 28 30 | imbi12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ↔ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) ) |
| 32 | 31 | ralbidv | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ↔ ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) ) |
| 33 | uneq1 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ∪ { 𝑛 } ) = ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) | |
| 34 | 33 | fveq2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) |
| 35 | 29 | oveq1d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) |
| 36 | 34 35 | eqeq12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ↔ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 37 | 36 | ralbidv | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ↔ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 38 | 32 37 | anbi12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ) ↔ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
| 39 | 27 38 | imbi12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑥 ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ) ) ↔ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) |
| 40 | sseq1 | ⊢ ( 𝑥 = 𝑌 → ( 𝑥 ⊆ ℤ ↔ 𝑌 ⊆ ℤ ) ) | |
| 41 | raleq | ⊢ ( 𝑥 = 𝑌 → ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 ↔ ∀ 𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 ) ) | |
| 42 | fveq2 | ⊢ ( 𝑥 = 𝑌 → ( lcm ‘ 𝑥 ) = ( lcm ‘ 𝑌 ) ) | |
| 43 | 42 | breq1d | ⊢ ( 𝑥 = 𝑌 → ( ( lcm ‘ 𝑥 ) ∥ 𝑘 ↔ ( lcm ‘ 𝑌 ) ∥ 𝑘 ) ) |
| 44 | 41 43 | imbi12d | ⊢ ( 𝑥 = 𝑌 → ( ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ↔ ( ∀ 𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑌 ) ∥ 𝑘 ) ) ) |
| 45 | 44 | ralbidv | ⊢ ( 𝑥 = 𝑌 → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ↔ ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑌 ) ∥ 𝑘 ) ) ) |
| 46 | uneq1 | ⊢ ( 𝑥 = 𝑌 → ( 𝑥 ∪ { 𝑛 } ) = ( 𝑌 ∪ { 𝑛 } ) ) | |
| 47 | 46 | fveq2d | ⊢ ( 𝑥 = 𝑌 → ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( lcm ‘ ( 𝑌 ∪ { 𝑛 } ) ) ) |
| 48 | 42 | oveq1d | ⊢ ( 𝑥 = 𝑌 → ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) = ( ( lcm ‘ 𝑌 ) lcm 𝑛 ) ) |
| 49 | 47 48 | eqeq12d | ⊢ ( 𝑥 = 𝑌 → ( ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ↔ ( lcm ‘ ( 𝑌 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑌 ) lcm 𝑛 ) ) ) |
| 50 | 49 | ralbidv | ⊢ ( 𝑥 = 𝑌 → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ↔ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑌 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑌 ) lcm 𝑛 ) ) ) |
| 51 | 45 50 | anbi12d | ⊢ ( 𝑥 = 𝑌 → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ) ↔ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑌 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑌 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑌 ) lcm 𝑛 ) ) ) ) |
| 52 | 40 51 | imbi12d | ⊢ ( 𝑥 = 𝑌 → ( ( 𝑥 ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑥 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑥 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑥 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑥 ) lcm 𝑛 ) ) ) ↔ ( 𝑌 ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑌 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑌 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑌 ) lcm 𝑛 ) ) ) ) ) |
| 53 | lcmf0 | ⊢ ( lcm ‘ ∅ ) = 1 | |
| 54 | 1dvds | ⊢ ( 𝑘 ∈ ℤ → 1 ∥ 𝑘 ) | |
| 55 | 53 54 | eqbrtrid | ⊢ ( 𝑘 ∈ ℤ → ( lcm ‘ ∅ ) ∥ 𝑘 ) |
| 56 | 55 | a1d | ⊢ ( 𝑘 ∈ ℤ → ( ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑘 → ( lcm ‘ ∅ ) ∥ 𝑘 ) ) |
| 57 | 56 | adantl | ⊢ ( ( ∅ ⊆ ℤ ∧ 𝑘 ∈ ℤ ) → ( ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑘 → ( lcm ‘ ∅ ) ∥ 𝑘 ) ) |
| 58 | 57 | ralrimiva | ⊢ ( ∅ ⊆ ℤ → ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑘 → ( lcm ‘ ∅ ) ∥ 𝑘 ) ) |
| 59 | uncom | ⊢ ( ∅ ∪ { 𝑛 } ) = ( { 𝑛 } ∪ ∅ ) | |
| 60 | un0 | ⊢ ( { 𝑛 } ∪ ∅ ) = { 𝑛 } | |
| 61 | 59 60 | eqtri | ⊢ ( ∅ ∪ { 𝑛 } ) = { 𝑛 } |
| 62 | 61 | a1i | ⊢ ( 𝑛 ∈ ℤ → ( ∅ ∪ { 𝑛 } ) = { 𝑛 } ) |
| 63 | 62 | fveq2d | ⊢ ( 𝑛 ∈ ℤ → ( lcm ‘ ( ∅ ∪ { 𝑛 } ) ) = ( lcm ‘ { 𝑛 } ) ) |
| 64 | lcmfsn | ⊢ ( 𝑛 ∈ ℤ → ( lcm ‘ { 𝑛 } ) = ( abs ‘ 𝑛 ) ) | |
| 65 | 53 | a1i | ⊢ ( 𝑛 ∈ ℤ → ( lcm ‘ ∅ ) = 1 ) |
| 66 | 65 | oveq1d | ⊢ ( 𝑛 ∈ ℤ → ( ( lcm ‘ ∅ ) lcm 𝑛 ) = ( 1 lcm 𝑛 ) ) |
| 67 | 1z | ⊢ 1 ∈ ℤ | |
| 68 | lcmcom | ⊢ ( ( 1 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 1 lcm 𝑛 ) = ( 𝑛 lcm 1 ) ) | |
| 69 | 67 68 | mpan | ⊢ ( 𝑛 ∈ ℤ → ( 1 lcm 𝑛 ) = ( 𝑛 lcm 1 ) ) |
| 70 | lcm1 | ⊢ ( 𝑛 ∈ ℤ → ( 𝑛 lcm 1 ) = ( abs ‘ 𝑛 ) ) | |
| 71 | 66 69 70 | 3eqtrrd | ⊢ ( 𝑛 ∈ ℤ → ( abs ‘ 𝑛 ) = ( ( lcm ‘ ∅ ) lcm 𝑛 ) ) |
| 72 | 63 64 71 | 3eqtrd | ⊢ ( 𝑛 ∈ ℤ → ( lcm ‘ ( ∅ ∪ { 𝑛 } ) ) = ( ( lcm ‘ ∅ ) lcm 𝑛 ) ) |
| 73 | 72 | adantl | ⊢ ( ( ∅ ⊆ ℤ ∧ 𝑛 ∈ ℤ ) → ( lcm ‘ ( ∅ ∪ { 𝑛 } ) ) = ( ( lcm ‘ ∅ ) lcm 𝑛 ) ) |
| 74 | 73 | ralrimiva | ⊢ ( ∅ ⊆ ℤ → ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ∅ ∪ { 𝑛 } ) ) = ( ( lcm ‘ ∅ ) lcm 𝑛 ) ) |
| 75 | 58 74 | jca | ⊢ ( ∅ ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ∅ 𝑚 ∥ 𝑘 → ( lcm ‘ ∅ ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ∅ ∪ { 𝑛 } ) ) = ( ( lcm ‘ ∅ ) lcm 𝑛 ) ) ) |
| 76 | unss | ⊢ ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) | |
| 77 | simpl | ⊢ ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) → 𝑦 ⊆ ℤ ) | |
| 78 | 76 77 | sylbir | ⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ → 𝑦 ⊆ ℤ ) |
| 79 | 78 | adantl | ⊢ ( ( 𝑦 ∈ Fin ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) → 𝑦 ⊆ ℤ ) |
| 80 | vex | ⊢ 𝑧 ∈ V | |
| 81 | 80 | snss | ⊢ ( 𝑧 ∈ ℤ ↔ { 𝑧 } ⊆ ℤ ) |
| 82 | lcmfunsnlem1 | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) | |
| 83 | lcmfunsnlem2 | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) | |
| 84 | 82 83 | jca | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 85 | 84 | 3exp1 | ⊢ ( 𝑧 ∈ ℤ → ( 𝑦 ⊆ ℤ → ( 𝑦 ∈ Fin → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) ) |
| 86 | 81 85 | sylbir | ⊢ ( { 𝑧 } ⊆ ℤ → ( 𝑦 ⊆ ℤ → ( 𝑦 ∈ Fin → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) ) |
| 87 | 86 | impcom | ⊢ ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) → ( 𝑦 ∈ Fin → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) |
| 88 | 76 87 | sylbir | ⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ → ( 𝑦 ∈ Fin → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) |
| 89 | 88 | impcom | ⊢ ( ( 𝑦 ∈ Fin ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
| 90 | 79 89 | embantd | ⊢ ( ( 𝑦 ∈ Fin ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) → ( ( 𝑦 ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
| 91 | 90 | ex | ⊢ ( 𝑦 ∈ Fin → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ → ( ( 𝑦 ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) |
| 92 | 91 | com23 | ⊢ ( 𝑦 ∈ Fin → ( ( 𝑦 ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) |
| 93 | 13 26 39 52 75 92 | findcard2 | ⊢ ( 𝑌 ∈ Fin → ( 𝑌 ⊆ ℤ → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑌 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑌 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑌 ) lcm 𝑛 ) ) ) ) |
| 94 | 93 | impcom | ⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑌 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑌 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑌 ) lcm 𝑛 ) ) ) |