This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the Kolmogorov quotient of a space is normal then so is the original space. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| Assertion | kqnrmlem2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) → 𝐽 ∈ Nrm ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| 2 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) → 𝐽 ∈ Top ) |
| 4 | simplr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) → ( KQ ‘ 𝐽 ) ∈ Nrm ) | |
| 5 | simpll | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 6 | simprl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) → 𝑧 ∈ 𝐽 ) | |
| 7 | 1 | kqopn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝐽 ) → ( 𝐹 “ 𝑧 ) ∈ ( KQ ‘ 𝐽 ) ) |
| 8 | 5 6 7 | syl2anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) → ( 𝐹 “ 𝑧 ) ∈ ( KQ ‘ 𝐽 ) ) |
| 9 | simprr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) → 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) | |
| 10 | 9 | elin1d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) → 𝑤 ∈ ( Clsd ‘ 𝐽 ) ) |
| 11 | 1 | kqcld | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐹 “ 𝑤 ) ∈ ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ) |
| 12 | 5 10 11 | syl2anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) → ( 𝐹 “ 𝑤 ) ∈ ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ) |
| 13 | 9 | elin2d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) → 𝑤 ∈ 𝒫 𝑧 ) |
| 14 | elpwi | ⊢ ( 𝑤 ∈ 𝒫 𝑧 → 𝑤 ⊆ 𝑧 ) | |
| 15 | imass2 | ⊢ ( 𝑤 ⊆ 𝑧 → ( 𝐹 “ 𝑤 ) ⊆ ( 𝐹 “ 𝑧 ) ) | |
| 16 | 13 14 15 | 3syl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) → ( 𝐹 “ 𝑤 ) ⊆ ( 𝐹 “ 𝑧 ) ) |
| 17 | nrmsep3 | ⊢ ( ( ( KQ ‘ 𝐽 ) ∈ Nrm ∧ ( ( 𝐹 “ 𝑧 ) ∈ ( KQ ‘ 𝐽 ) ∧ ( 𝐹 “ 𝑤 ) ∈ ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ∧ ( 𝐹 “ 𝑤 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) | |
| 18 | 4 8 12 16 17 | syl13anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) |
| 19 | simplll | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑚 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 20 | 1 | kqid | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn ( KQ ‘ 𝐽 ) ) ) |
| 21 | 19 20 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑚 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → 𝐹 ∈ ( 𝐽 Cn ( KQ ‘ 𝐽 ) ) ) |
| 22 | simprl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑚 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → 𝑚 ∈ ( KQ ‘ 𝐽 ) ) | |
| 23 | cnima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn ( KQ ‘ 𝐽 ) ) ∧ 𝑚 ∈ ( KQ ‘ 𝐽 ) ) → ( ◡ 𝐹 “ 𝑚 ) ∈ 𝐽 ) | |
| 24 | 21 22 23 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑚 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → ( ◡ 𝐹 “ 𝑚 ) ∈ 𝐽 ) |
| 25 | simprrl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑚 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ) | |
| 26 | 1 | kqffn | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 Fn 𝑋 ) |
| 27 | fnfun | ⊢ ( 𝐹 Fn 𝑋 → Fun 𝐹 ) | |
| 28 | 19 26 27 | 3syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑚 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → Fun 𝐹 ) |
| 29 | 10 | adantr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑚 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → 𝑤 ∈ ( Clsd ‘ 𝐽 ) ) |
| 30 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 31 | 30 | cldss | ⊢ ( 𝑤 ∈ ( Clsd ‘ 𝐽 ) → 𝑤 ⊆ ∪ 𝐽 ) |
| 32 | 29 31 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑚 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → 𝑤 ⊆ ∪ 𝐽 ) |
| 33 | fndm | ⊢ ( 𝐹 Fn 𝑋 → dom 𝐹 = 𝑋 ) | |
| 34 | 19 26 33 | 3syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑚 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → dom 𝐹 = 𝑋 ) |
| 35 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 36 | 19 35 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑚 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → 𝑋 = ∪ 𝐽 ) |
| 37 | 34 36 | eqtrd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑚 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → dom 𝐹 = ∪ 𝐽 ) |
| 38 | 32 37 | sseqtrrd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑚 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → 𝑤 ⊆ dom 𝐹 ) |
| 39 | funimass3 | ⊢ ( ( Fun 𝐹 ∧ 𝑤 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ↔ 𝑤 ⊆ ( ◡ 𝐹 “ 𝑚 ) ) ) | |
| 40 | 28 38 39 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑚 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ↔ 𝑤 ⊆ ( ◡ 𝐹 “ 𝑚 ) ) ) |
| 41 | 25 40 | mpbid | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑚 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → 𝑤 ⊆ ( ◡ 𝐹 “ 𝑚 ) ) |
| 42 | 1 | kqtopon | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) ) |
| 43 | topontop | ⊢ ( ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) → ( KQ ‘ 𝐽 ) ∈ Top ) | |
| 44 | 19 42 43 | 3syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑚 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → ( KQ ‘ 𝐽 ) ∈ Top ) |
| 45 | elssuni | ⊢ ( 𝑚 ∈ ( KQ ‘ 𝐽 ) → 𝑚 ⊆ ∪ ( KQ ‘ 𝐽 ) ) | |
| 46 | 45 | ad2antrl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑚 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → 𝑚 ⊆ ∪ ( KQ ‘ 𝐽 ) ) |
| 47 | eqid | ⊢ ∪ ( KQ ‘ 𝐽 ) = ∪ ( KQ ‘ 𝐽 ) | |
| 48 | 47 | clscld | ⊢ ( ( ( KQ ‘ 𝐽 ) ∈ Top ∧ 𝑚 ⊆ ∪ ( KQ ‘ 𝐽 ) ) → ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ∈ ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ) |
| 49 | 44 46 48 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑚 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ∈ ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ) |
| 50 | cnclima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn ( KQ ‘ 𝐽 ) ) ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ∈ ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ) → ( ◡ 𝐹 “ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ) ∈ ( Clsd ‘ 𝐽 ) ) | |
| 51 | 21 49 50 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑚 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → ( ◡ 𝐹 “ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 52 | 47 | sscls | ⊢ ( ( ( KQ ‘ 𝐽 ) ∈ Top ∧ 𝑚 ⊆ ∪ ( KQ ‘ 𝐽 ) ) → 𝑚 ⊆ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ) |
| 53 | 44 46 52 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑚 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → 𝑚 ⊆ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ) |
| 54 | imass2 | ⊢ ( 𝑚 ⊆ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) → ( ◡ 𝐹 “ 𝑚 ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ) ) | |
| 55 | 53 54 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑚 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → ( ◡ 𝐹 “ 𝑚 ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ) ) |
| 56 | 30 | clsss2 | ⊢ ( ( ( ◡ 𝐹 “ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ) ∈ ( Clsd ‘ 𝐽 ) ∧ ( ◡ 𝐹 “ 𝑚 ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ) ) → ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑚 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ) ) |
| 57 | 51 55 56 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑚 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑚 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ) ) |
| 58 | simprrr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑚 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) | |
| 59 | imass2 | ⊢ ( ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) → ( ◡ 𝐹 “ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ) ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑧 ) ) ) | |
| 60 | 58 59 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑚 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → ( ◡ 𝐹 “ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ) ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑧 ) ) ) |
| 61 | 6 | adantr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑚 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → 𝑧 ∈ 𝐽 ) |
| 62 | 1 | kqsat | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝐽 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑧 ) ) = 𝑧 ) |
| 63 | 19 61 62 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑚 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑧 ) ) = 𝑧 ) |
| 64 | 60 63 | sseqtrd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑚 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → ( ◡ 𝐹 “ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ) ⊆ 𝑧 ) |
| 65 | 57 64 | sstrd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑚 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑚 ) ) ⊆ 𝑧 ) |
| 66 | sseq2 | ⊢ ( 𝑢 = ( ◡ 𝐹 “ 𝑚 ) → ( 𝑤 ⊆ 𝑢 ↔ 𝑤 ⊆ ( ◡ 𝐹 “ 𝑚 ) ) ) | |
| 67 | fveq2 | ⊢ ( 𝑢 = ( ◡ 𝐹 “ 𝑚 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) = ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑚 ) ) ) | |
| 68 | 67 | sseq1d | ⊢ ( 𝑢 = ( ◡ 𝐹 “ 𝑚 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ 𝑧 ↔ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑚 ) ) ⊆ 𝑧 ) ) |
| 69 | 66 68 | anbi12d | ⊢ ( 𝑢 = ( ◡ 𝐹 “ 𝑚 ) → ( ( 𝑤 ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ 𝑧 ) ↔ ( 𝑤 ⊆ ( ◡ 𝐹 “ 𝑚 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑚 ) ) ⊆ 𝑧 ) ) ) |
| 70 | 69 | rspcev | ⊢ ( ( ( ◡ 𝐹 “ 𝑚 ) ∈ 𝐽 ∧ ( 𝑤 ⊆ ( ◡ 𝐹 “ 𝑚 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑚 ) ) ⊆ 𝑧 ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝑤 ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ 𝑧 ) ) |
| 71 | 24 41 65 70 | syl12anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) ∧ ( 𝑚 ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑚 ∧ ( ( cls ‘ ( KQ ‘ 𝐽 ) ) ‘ 𝑚 ) ⊆ ( 𝐹 “ 𝑧 ) ) ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝑤 ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ 𝑧 ) ) |
| 72 | 18 71 | rexlimddv | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝑤 ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ 𝑧 ) ) |
| 73 | 72 | ralrimivva | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) → ∀ 𝑧 ∈ 𝐽 ∀ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ∃ 𝑢 ∈ 𝐽 ( 𝑤 ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ 𝑧 ) ) |
| 74 | isnrm | ⊢ ( 𝐽 ∈ Nrm ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑧 ∈ 𝐽 ∀ 𝑤 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑧 ) ∃ 𝑢 ∈ 𝐽 ( 𝑤 ⊆ 𝑢 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑢 ) ⊆ 𝑧 ) ) ) | |
| 75 | 3 73 74 | sylanbrc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Nrm ) → 𝐽 ∈ Nrm ) |