This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a normal space, given a closed set B inside an open set A , there is an open set x such that B C_ x C_ cls ( x ) C_ A . (Contributed by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nrmsep3 | ⊢ ( ( 𝐽 ∈ Nrm ∧ ( 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ⊆ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝐵 ⊆ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnrm | ⊢ ( 𝐽 ∈ Nrm ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ 𝐽 ∀ 𝑧 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑦 ) ∃ 𝑥 ∈ 𝐽 ( 𝑧 ⊆ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑦 ) ) ) | |
| 2 | pweq | ⊢ ( 𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴 ) | |
| 3 | 2 | ineq2d | ⊢ ( 𝑦 = 𝐴 → ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑦 ) = ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝐴 ) ) |
| 4 | sseq2 | ⊢ ( 𝑦 = 𝐴 → ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑦 ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝐴 ) ) | |
| 5 | 4 | anbi2d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑧 ⊆ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑦 ) ↔ ( 𝑧 ⊆ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝐴 ) ) ) |
| 6 | 5 | rexbidv | ⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ∈ 𝐽 ( 𝑧 ⊆ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑦 ) ↔ ∃ 𝑥 ∈ 𝐽 ( 𝑧 ⊆ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝐴 ) ) ) |
| 7 | 3 6 | raleqbidv | ⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑧 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑦 ) ∃ 𝑥 ∈ 𝐽 ( 𝑧 ⊆ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑦 ) ↔ ∀ 𝑧 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝐴 ) ∃ 𝑥 ∈ 𝐽 ( 𝑧 ⊆ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝐴 ) ) ) |
| 8 | 7 | rspccv | ⊢ ( ∀ 𝑦 ∈ 𝐽 ∀ 𝑧 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑦 ) ∃ 𝑥 ∈ 𝐽 ( 𝑧 ⊆ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑦 ) → ( 𝐴 ∈ 𝐽 → ∀ 𝑧 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝐴 ) ∃ 𝑥 ∈ 𝐽 ( 𝑧 ⊆ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝐴 ) ) ) |
| 9 | 1 8 | simplbiim | ⊢ ( 𝐽 ∈ Nrm → ( 𝐴 ∈ 𝐽 → ∀ 𝑧 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝐴 ) ∃ 𝑥 ∈ 𝐽 ( 𝑧 ⊆ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝐴 ) ) ) |
| 10 | elin | ⊢ ( 𝐵 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝐴 ) ↔ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ∈ 𝒫 𝐴 ) ) | |
| 11 | elpwg | ⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ( 𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴 ) ) | |
| 12 | 11 | pm5.32i | ⊢ ( ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ∈ 𝒫 𝐴 ) ↔ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ⊆ 𝐴 ) ) |
| 13 | 10 12 | bitri | ⊢ ( 𝐵 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝐴 ) ↔ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ⊆ 𝐴 ) ) |
| 14 | cleq1lem | ⊢ ( 𝑧 = 𝐵 → ( ( 𝑧 ⊆ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝐴 ) ↔ ( 𝐵 ⊆ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝐴 ) ) ) | |
| 15 | 14 | rexbidv | ⊢ ( 𝑧 = 𝐵 → ( ∃ 𝑥 ∈ 𝐽 ( 𝑧 ⊆ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝐴 ) ↔ ∃ 𝑥 ∈ 𝐽 ( 𝐵 ⊆ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝐴 ) ) ) |
| 16 | 15 | rspccv | ⊢ ( ∀ 𝑧 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝐴 ) ∃ 𝑥 ∈ 𝐽 ( 𝑧 ⊆ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝐴 ) → ( 𝐵 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝐴 ) → ∃ 𝑥 ∈ 𝐽 ( 𝐵 ⊆ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝐴 ) ) ) |
| 17 | 13 16 | biimtrrid | ⊢ ( ∀ 𝑧 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝐴 ) ∃ 𝑥 ∈ 𝐽 ( 𝑧 ⊆ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝐴 ) → ( ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ⊆ 𝐴 ) → ∃ 𝑥 ∈ 𝐽 ( 𝐵 ⊆ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝐴 ) ) ) |
| 18 | 9 17 | syl6 | ⊢ ( 𝐽 ∈ Nrm → ( 𝐴 ∈ 𝐽 → ( ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ⊆ 𝐴 ) → ∃ 𝑥 ∈ 𝐽 ( 𝐵 ⊆ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝐴 ) ) ) ) |
| 19 | 18 | exp4a | ⊢ ( 𝐽 ∈ Nrm → ( 𝐴 ∈ 𝐽 → ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ( 𝐵 ⊆ 𝐴 → ∃ 𝑥 ∈ 𝐽 ( 𝐵 ⊆ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝐴 ) ) ) ) ) |
| 20 | 19 | 3imp2 | ⊢ ( ( 𝐽 ∈ Nrm ∧ ( 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐵 ⊆ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝐵 ⊆ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝐴 ) ) |