This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| Assertion | kqtopon | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| 2 | 1 | kqval | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) = ( 𝐽 qTop 𝐹 ) ) |
| 3 | 1 | kqffn | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 Fn 𝑋 ) |
| 4 | dffn4 | ⊢ ( 𝐹 Fn 𝑋 ↔ 𝐹 : 𝑋 –onto→ ran 𝐹 ) | |
| 5 | 3 4 | sylib | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 : 𝑋 –onto→ ran 𝐹 ) |
| 6 | qtoptopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ ran 𝐹 ) → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ ran 𝐹 ) ) | |
| 7 | 5 6 | mpdan | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ ran 𝐹 ) ) |
| 8 | 2 7 | eqeltrd | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) ) |