This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the Kolmogorov quotient of a space is normal then so is the original space. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kqval.2 | |- F = ( x e. X |-> { y e. J | x e. y } ) |
|
| Assertion | kqnrmlem2 | |- ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) -> J e. Nrm ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kqval.2 | |- F = ( x e. X |-> { y e. J | x e. y } ) |
|
| 2 | topontop | |- ( J e. ( TopOn ` X ) -> J e. Top ) |
|
| 3 | 2 | adantr | |- ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) -> J e. Top ) |
| 4 | simplr | |- ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> ( KQ ` J ) e. Nrm ) |
|
| 5 | simpll | |- ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> J e. ( TopOn ` X ) ) |
|
| 6 | simprl | |- ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> z e. J ) |
|
| 7 | 1 | kqopn | |- ( ( J e. ( TopOn ` X ) /\ z e. J ) -> ( F " z ) e. ( KQ ` J ) ) |
| 8 | 5 6 7 | syl2anc | |- ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> ( F " z ) e. ( KQ ` J ) ) |
| 9 | simprr | |- ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> w e. ( ( Clsd ` J ) i^i ~P z ) ) |
|
| 10 | 9 | elin1d | |- ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> w e. ( Clsd ` J ) ) |
| 11 | 1 | kqcld | |- ( ( J e. ( TopOn ` X ) /\ w e. ( Clsd ` J ) ) -> ( F " w ) e. ( Clsd ` ( KQ ` J ) ) ) |
| 12 | 5 10 11 | syl2anc | |- ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> ( F " w ) e. ( Clsd ` ( KQ ` J ) ) ) |
| 13 | 9 | elin2d | |- ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> w e. ~P z ) |
| 14 | elpwi | |- ( w e. ~P z -> w C_ z ) |
|
| 15 | imass2 | |- ( w C_ z -> ( F " w ) C_ ( F " z ) ) |
|
| 16 | 13 14 15 | 3syl | |- ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> ( F " w ) C_ ( F " z ) ) |
| 17 | nrmsep3 | |- ( ( ( KQ ` J ) e. Nrm /\ ( ( F " z ) e. ( KQ ` J ) /\ ( F " w ) e. ( Clsd ` ( KQ ` J ) ) /\ ( F " w ) C_ ( F " z ) ) ) -> E. m e. ( KQ ` J ) ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) |
|
| 18 | 4 8 12 16 17 | syl13anc | |- ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> E. m e. ( KQ ` J ) ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) |
| 19 | simplll | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> J e. ( TopOn ` X ) ) |
|
| 20 | 1 | kqid | |- ( J e. ( TopOn ` X ) -> F e. ( J Cn ( KQ ` J ) ) ) |
| 21 | 19 20 | syl | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> F e. ( J Cn ( KQ ` J ) ) ) |
| 22 | simprl | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> m e. ( KQ ` J ) ) |
|
| 23 | cnima | |- ( ( F e. ( J Cn ( KQ ` J ) ) /\ m e. ( KQ ` J ) ) -> ( `' F " m ) e. J ) |
|
| 24 | 21 22 23 | syl2anc | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( `' F " m ) e. J ) |
| 25 | simprrl | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( F " w ) C_ m ) |
|
| 26 | 1 | kqffn | |- ( J e. ( TopOn ` X ) -> F Fn X ) |
| 27 | fnfun | |- ( F Fn X -> Fun F ) |
|
| 28 | 19 26 27 | 3syl | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> Fun F ) |
| 29 | 10 | adantr | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> w e. ( Clsd ` J ) ) |
| 30 | eqid | |- U. J = U. J |
|
| 31 | 30 | cldss | |- ( w e. ( Clsd ` J ) -> w C_ U. J ) |
| 32 | 29 31 | syl | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> w C_ U. J ) |
| 33 | fndm | |- ( F Fn X -> dom F = X ) |
|
| 34 | 19 26 33 | 3syl | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> dom F = X ) |
| 35 | toponuni | |- ( J e. ( TopOn ` X ) -> X = U. J ) |
|
| 36 | 19 35 | syl | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> X = U. J ) |
| 37 | 34 36 | eqtrd | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> dom F = U. J ) |
| 38 | 32 37 | sseqtrrd | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> w C_ dom F ) |
| 39 | funimass3 | |- ( ( Fun F /\ w C_ dom F ) -> ( ( F " w ) C_ m <-> w C_ ( `' F " m ) ) ) |
|
| 40 | 28 38 39 | syl2anc | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( ( F " w ) C_ m <-> w C_ ( `' F " m ) ) ) |
| 41 | 25 40 | mpbid | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> w C_ ( `' F " m ) ) |
| 42 | 1 | kqtopon | |- ( J e. ( TopOn ` X ) -> ( KQ ` J ) e. ( TopOn ` ran F ) ) |
| 43 | topontop | |- ( ( KQ ` J ) e. ( TopOn ` ran F ) -> ( KQ ` J ) e. Top ) |
|
| 44 | 19 42 43 | 3syl | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( KQ ` J ) e. Top ) |
| 45 | elssuni | |- ( m e. ( KQ ` J ) -> m C_ U. ( KQ ` J ) ) |
|
| 46 | 45 | ad2antrl | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> m C_ U. ( KQ ` J ) ) |
| 47 | eqid | |- U. ( KQ ` J ) = U. ( KQ ` J ) |
|
| 48 | 47 | clscld | |- ( ( ( KQ ` J ) e. Top /\ m C_ U. ( KQ ` J ) ) -> ( ( cls ` ( KQ ` J ) ) ` m ) e. ( Clsd ` ( KQ ` J ) ) ) |
| 49 | 44 46 48 | syl2anc | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( ( cls ` ( KQ ` J ) ) ` m ) e. ( Clsd ` ( KQ ` J ) ) ) |
| 50 | cnclima | |- ( ( F e. ( J Cn ( KQ ` J ) ) /\ ( ( cls ` ( KQ ` J ) ) ` m ) e. ( Clsd ` ( KQ ` J ) ) ) -> ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) e. ( Clsd ` J ) ) |
|
| 51 | 21 49 50 | syl2anc | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) e. ( Clsd ` J ) ) |
| 52 | 47 | sscls | |- ( ( ( KQ ` J ) e. Top /\ m C_ U. ( KQ ` J ) ) -> m C_ ( ( cls ` ( KQ ` J ) ) ` m ) ) |
| 53 | 44 46 52 | syl2anc | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> m C_ ( ( cls ` ( KQ ` J ) ) ` m ) ) |
| 54 | imass2 | |- ( m C_ ( ( cls ` ( KQ ` J ) ) ` m ) -> ( `' F " m ) C_ ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) ) |
|
| 55 | 53 54 | syl | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( `' F " m ) C_ ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) ) |
| 56 | 30 | clsss2 | |- ( ( ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) e. ( Clsd ` J ) /\ ( `' F " m ) C_ ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) ) -> ( ( cls ` J ) ` ( `' F " m ) ) C_ ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) ) |
| 57 | 51 55 56 | syl2anc | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( ( cls ` J ) ` ( `' F " m ) ) C_ ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) ) |
| 58 | simprrr | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) |
|
| 59 | imass2 | |- ( ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) -> ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) C_ ( `' F " ( F " z ) ) ) |
|
| 60 | 58 59 | syl | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) C_ ( `' F " ( F " z ) ) ) |
| 61 | 6 | adantr | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> z e. J ) |
| 62 | 1 | kqsat | |- ( ( J e. ( TopOn ` X ) /\ z e. J ) -> ( `' F " ( F " z ) ) = z ) |
| 63 | 19 61 62 | syl2anc | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( `' F " ( F " z ) ) = z ) |
| 64 | 60 63 | sseqtrd | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) C_ z ) |
| 65 | 57 64 | sstrd | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( ( cls ` J ) ` ( `' F " m ) ) C_ z ) |
| 66 | sseq2 | |- ( u = ( `' F " m ) -> ( w C_ u <-> w C_ ( `' F " m ) ) ) |
|
| 67 | fveq2 | |- ( u = ( `' F " m ) -> ( ( cls ` J ) ` u ) = ( ( cls ` J ) ` ( `' F " m ) ) ) |
|
| 68 | 67 | sseq1d | |- ( u = ( `' F " m ) -> ( ( ( cls ` J ) ` u ) C_ z <-> ( ( cls ` J ) ` ( `' F " m ) ) C_ z ) ) |
| 69 | 66 68 | anbi12d | |- ( u = ( `' F " m ) -> ( ( w C_ u /\ ( ( cls ` J ) ` u ) C_ z ) <-> ( w C_ ( `' F " m ) /\ ( ( cls ` J ) ` ( `' F " m ) ) C_ z ) ) ) |
| 70 | 69 | rspcev | |- ( ( ( `' F " m ) e. J /\ ( w C_ ( `' F " m ) /\ ( ( cls ` J ) ` ( `' F " m ) ) C_ z ) ) -> E. u e. J ( w C_ u /\ ( ( cls ` J ) ` u ) C_ z ) ) |
| 71 | 24 41 65 70 | syl12anc | |- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> E. u e. J ( w C_ u /\ ( ( cls ` J ) ` u ) C_ z ) ) |
| 72 | 18 71 | rexlimddv | |- ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> E. u e. J ( w C_ u /\ ( ( cls ` J ) ` u ) C_ z ) ) |
| 73 | 72 | ralrimivva | |- ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) -> A. z e. J A. w e. ( ( Clsd ` J ) i^i ~P z ) E. u e. J ( w C_ u /\ ( ( cls ` J ) ` u ) C_ z ) ) |
| 74 | isnrm | |- ( J e. Nrm <-> ( J e. Top /\ A. z e. J A. w e. ( ( Clsd ` J ) i^i ~P z ) E. u e. J ( w C_ u /\ ( ( cls ` J ) ` u ) C_ z ) ) ) |
|
| 75 | 3 73 74 | sylanbrc | |- ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) -> J e. Nrm ) |