This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any open set is saturated with respect to the topological indistinguishability map (in the terminology of qtoprest ). (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| Assertion | kqsat | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) = 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| 2 | 1 | kqffn | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 Fn 𝑋 ) |
| 3 | elpreima | ⊢ ( 𝐹 Fn 𝑋 → ( 𝑧 ∈ ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) ↔ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑈 ) ) ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝑧 ∈ ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) ↔ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑈 ) ) ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( 𝑧 ∈ ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) ↔ ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑈 ) ) ) ) |
| 6 | 1 | kqfvima | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑈 ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
| 7 | 6 | 3expa | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑈 ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
| 8 | 7 | biimprd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑈 ) → 𝑧 ∈ 𝑈 ) ) |
| 9 | 8 | expimpd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑈 ) ) → 𝑧 ∈ 𝑈 ) ) |
| 10 | 5 9 | sylbid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( 𝑧 ∈ ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) → 𝑧 ∈ 𝑈 ) ) |
| 11 | 10 | ssrdv | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) ⊆ 𝑈 ) |
| 12 | toponss | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → 𝑈 ⊆ 𝑋 ) | |
| 13 | 2 | fndmd | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → dom 𝐹 = 𝑋 ) |
| 14 | 13 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → dom 𝐹 = 𝑋 ) |
| 15 | 12 14 | sseqtrrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → 𝑈 ⊆ dom 𝐹 ) |
| 16 | sseqin2 | ⊢ ( 𝑈 ⊆ dom 𝐹 ↔ ( dom 𝐹 ∩ 𝑈 ) = 𝑈 ) | |
| 17 | 15 16 | sylib | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( dom 𝐹 ∩ 𝑈 ) = 𝑈 ) |
| 18 | dminss | ⊢ ( dom 𝐹 ∩ 𝑈 ) ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) | |
| 19 | 17 18 | eqsstrrdi | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → 𝑈 ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) ) |
| 20 | 11 19 | eqssd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) = 𝑈 ) |