This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topological indistinguishability map is an open map. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| Assertion | kqopn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( 𝐹 “ 𝑈 ) ∈ ( KQ ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| 2 | imassrn | ⊢ ( 𝐹 “ 𝑈 ) ⊆ ran 𝐹 | |
| 3 | 2 | a1i | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( 𝐹 “ 𝑈 ) ⊆ ran 𝐹 ) |
| 4 | 1 | kqsat | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) = 𝑈 ) |
| 5 | simpr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → 𝑈 ∈ 𝐽 ) | |
| 6 | 4 5 | eqeltrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) ∈ 𝐽 ) |
| 7 | 1 | kqffn | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 Fn 𝑋 ) |
| 8 | dffn4 | ⊢ ( 𝐹 Fn 𝑋 ↔ 𝐹 : 𝑋 –onto→ ran 𝐹 ) | |
| 9 | 7 8 | sylib | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 : 𝑋 –onto→ ran 𝐹 ) |
| 10 | 9 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → 𝐹 : 𝑋 –onto→ ran 𝐹 ) |
| 11 | elqtop3 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ ran 𝐹 ) → ( ( 𝐹 “ 𝑈 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ( 𝐹 “ 𝑈 ) ⊆ ran 𝐹 ∧ ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) ∈ 𝐽 ) ) ) | |
| 12 | 10 11 | syldan | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( ( 𝐹 “ 𝑈 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ( 𝐹 “ 𝑈 ) ⊆ ran 𝐹 ∧ ( ◡ 𝐹 “ ( 𝐹 “ 𝑈 ) ) ∈ 𝐽 ) ) ) |
| 13 | 3 6 12 | mpbir2and | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( 𝐹 “ 𝑈 ) ∈ ( 𝐽 qTop 𝐹 ) ) |
| 14 | 1 | kqval | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) = ( 𝐽 qTop 𝐹 ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( KQ ‘ 𝐽 ) = ( 𝐽 qTop 𝐹 ) ) |
| 16 | 13 15 | eleqtrrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → ( 𝐹 “ 𝑈 ) ∈ ( KQ ‘ 𝐽 ) ) |