This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kqtop | ⊢ ( 𝐽 ∈ Top ↔ ( KQ ‘ 𝐽 ) ∈ Top ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toptopon2 | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
| 2 | eqid | ⊢ ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) = ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| 3 | 2 | kqtopon | ⊢ ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) → ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) ) ) |
| 4 | 1 3 | sylbi | ⊢ ( 𝐽 ∈ Top → ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) ) ) |
| 5 | topontop | ⊢ ( ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran ( 𝑥 ∈ ∪ 𝐽 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) ) → ( KQ ‘ 𝐽 ) ∈ Top ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐽 ∈ Top → ( KQ ‘ 𝐽 ) ∈ Top ) |
| 7 | 0opn | ⊢ ( ( KQ ‘ 𝐽 ) ∈ Top → ∅ ∈ ( KQ ‘ 𝐽 ) ) | |
| 8 | elfvdm | ⊢ ( ∅ ∈ ( KQ ‘ 𝐽 ) → 𝐽 ∈ dom KQ ) | |
| 9 | 7 8 | syl | ⊢ ( ( KQ ‘ 𝐽 ) ∈ Top → 𝐽 ∈ dom KQ ) |
| 10 | ovex | ⊢ ( 𝑗 qTop ( 𝑥 ∈ ∪ 𝑗 ↦ { 𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦 } ) ) ∈ V | |
| 11 | df-kq | ⊢ KQ = ( 𝑗 ∈ Top ↦ ( 𝑗 qTop ( 𝑥 ∈ ∪ 𝑗 ↦ { 𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦 } ) ) ) | |
| 12 | 10 11 | dmmpti | ⊢ dom KQ = Top |
| 13 | 9 12 | eleqtrdi | ⊢ ( ( KQ ‘ 𝐽 ) ∈ Top → 𝐽 ∈ Top ) |
| 14 | 6 13 | impbii | ⊢ ( 𝐽 ∈ Top ↔ ( KQ ‘ 𝐽 ) ∈ Top ) |