This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4 1 <=> 4. (Contributed by NM, 5-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kmlem9.1 | ⊢ 𝐴 = { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } | |
| Assertion | kmlem13 | ⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∀ 𝑥 ( ¬ ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kmlem9.1 | ⊢ 𝐴 = { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } | |
| 2 | kmlem1 | ⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) → ∀ 𝑥 ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) | |
| 3 | raleq | ⊢ ( 𝑥 = ℎ → ( ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ↔ ∀ 𝑤 ∈ ℎ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) | |
| 4 | 3 | raleqbi1dv | ⊢ ( 𝑥 = ℎ → ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ↔ ∀ 𝑧 ∈ ℎ ∀ 𝑤 ∈ ℎ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
| 5 | raleq | ⊢ ( 𝑥 = ℎ → ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∀ 𝑧 ∈ ℎ ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) | |
| 6 | 5 | exbidv | ⊢ ( 𝑥 = ℎ → ( ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∃ 𝑦 ∀ 𝑧 ∈ ℎ ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 7 | 4 6 | imbi12d | ⊢ ( 𝑥 = ℎ → ( ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ↔ ( ∀ 𝑧 ∈ ℎ ∀ 𝑤 ∈ ℎ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∃ 𝑦 ∀ 𝑧 ∈ ℎ ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) ) |
| 8 | 7 | cbvalvw | ⊢ ( ∀ 𝑥 ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ↔ ∀ ℎ ( ∀ 𝑧 ∈ ℎ ∀ 𝑤 ∈ ℎ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∃ 𝑦 ∀ 𝑧 ∈ ℎ ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 9 | 1 | kmlem10 | ⊢ ( ∀ ℎ ( ∀ 𝑧 ∈ ℎ ∀ 𝑤 ∈ ℎ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∃ 𝑦 ∀ 𝑧 ∈ ℎ ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
| 10 | ineq2 | ⊢ ( 𝑦 = 𝑔 → ( 𝑧 ∩ 𝑦 ) = ( 𝑧 ∩ 𝑔 ) ) | |
| 11 | 10 | eleq2d | ⊢ ( 𝑦 = 𝑔 → ( 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ 𝑣 ∈ ( 𝑧 ∩ 𝑔 ) ) ) |
| 12 | 11 | eubidv | ⊢ ( 𝑦 = 𝑔 → ( ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑔 ) ) ) |
| 13 | 12 | imbi2d | ⊢ ( 𝑦 = 𝑔 → ( ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑔 ) ) ) ) |
| 14 | 13 | ralbidv | ⊢ ( 𝑦 = 𝑔 → ( ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑔 ) ) ) ) |
| 15 | 14 | cbvexvw | ⊢ ( ∃ 𝑦 ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∃ 𝑔 ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑔 ) ) ) |
| 16 | kmlem3 | ⊢ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ≠ ∅ ↔ ∃ 𝑣 ∈ 𝑧 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) | |
| 17 | ralinexa | ⊢ ( ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ↔ ¬ ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) | |
| 18 | 17 | rexbii | ⊢ ( ∃ 𝑣 ∈ 𝑧 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ↔ ∃ 𝑣 ∈ 𝑧 ¬ ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) |
| 19 | rexnal | ⊢ ( ∃ 𝑣 ∈ 𝑧 ¬ ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ↔ ¬ ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) | |
| 20 | 16 18 19 | 3bitri | ⊢ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ≠ ∅ ↔ ¬ ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) |
| 21 | 20 | ralbii | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ≠ ∅ ↔ ∀ 𝑧 ∈ 𝑥 ¬ ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) |
| 22 | ralnex | ⊢ ( ∀ 𝑧 ∈ 𝑥 ¬ ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ↔ ¬ ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) | |
| 23 | 21 22 | bitri | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ≠ ∅ ↔ ¬ ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) |
| 24 | 1 | kmlem12 | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ≠ ∅ → ( ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑔 ) ) → ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑔 ∩ ∪ 𝐴 ) ) ) ) ) |
| 25 | vex | ⊢ 𝑔 ∈ V | |
| 26 | 25 | inex1 | ⊢ ( 𝑔 ∩ ∪ 𝐴 ) ∈ V |
| 27 | ineq2 | ⊢ ( 𝑦 = ( 𝑔 ∩ ∪ 𝐴 ) → ( 𝑧 ∩ 𝑦 ) = ( 𝑧 ∩ ( 𝑔 ∩ ∪ 𝐴 ) ) ) | |
| 28 | 27 | eleq2d | ⊢ ( 𝑦 = ( 𝑔 ∩ ∪ 𝐴 ) → ( 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ 𝑣 ∈ ( 𝑧 ∩ ( 𝑔 ∩ ∪ 𝐴 ) ) ) ) |
| 29 | 28 | eubidv | ⊢ ( 𝑦 = ( 𝑔 ∩ ∪ 𝐴 ) → ( ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑔 ∩ ∪ 𝐴 ) ) ) ) |
| 30 | 29 | imbi2d | ⊢ ( 𝑦 = ( 𝑔 ∩ ∪ 𝐴 ) → ( ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑔 ∩ ∪ 𝐴 ) ) ) ) ) |
| 31 | 30 | ralbidv | ⊢ ( 𝑦 = ( 𝑔 ∩ ∪ 𝐴 ) → ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑔 ∩ ∪ 𝐴 ) ) ) ) ) |
| 32 | 26 31 | spcev | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑔 ∩ ∪ 𝐴 ) ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
| 33 | 24 32 | syl6 | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ≠ ∅ → ( ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑔 ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 34 | 33 | exlimdv | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ≠ ∅ → ( ∃ 𝑔 ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑔 ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 35 | 34 | com12 | ⊢ ( ∃ 𝑔 ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑔 ) ) → ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ≠ ∅ → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 36 | 23 35 | biimtrrid | ⊢ ( ∃ 𝑔 ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑔 ) ) → ( ¬ ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 37 | 15 36 | sylbi | ⊢ ( ∃ 𝑦 ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) → ( ¬ ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 38 | 9 37 | syl | ⊢ ( ∀ ℎ ( ∀ 𝑧 ∈ ℎ ∀ 𝑤 ∈ ℎ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∃ 𝑦 ∀ 𝑧 ∈ ℎ ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) → ( ¬ ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 39 | 38 | alrimiv | ⊢ ( ∀ ℎ ( ∀ 𝑧 ∈ ℎ ∀ 𝑤 ∈ ℎ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∃ 𝑦 ∀ 𝑧 ∈ ℎ ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) → ∀ 𝑥 ( ¬ ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 40 | 8 39 | sylbi | ⊢ ( ∀ 𝑥 ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) → ∀ 𝑥 ( ¬ ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 41 | 2 40 | syl | ⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) → ∀ 𝑥 ( ¬ ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 42 | kmlem7 | ⊢ ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ¬ ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) | |
| 43 | 42 | imim1i | ⊢ ( ( ¬ ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) → ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 44 | biimt | ⊢ ( 𝑧 ≠ ∅ → ( ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) | |
| 45 | 44 | ralimi | ⊢ ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ → ∀ 𝑧 ∈ 𝑥 ( ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 46 | ralbi | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) → ( ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) | |
| 47 | 45 46 | syl | ⊢ ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ → ( ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 48 | 47 | exbidv | ⊢ ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ → ( ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 49 | 48 | adantr | ⊢ ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ( ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 50 | 49 | pm5.74i | ⊢ ( ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 51 | 43 50 | sylibr | ⊢ ( ( ¬ ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) → ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
| 52 | 51 | alimi | ⊢ ( ∀ 𝑥 ( ¬ ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) → ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
| 53 | 41 52 | impbii | ⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∀ 𝑥 ( ¬ ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |