This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. The right-hand side is part of the hypothesis of 4. (Contributed by NM, 25-Mar-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kmlem3 | ⊢ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ≠ ∅ ↔ ∃ 𝑣 ∈ 𝑧 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdif2 | ⊢ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) = { 𝑣 ∈ 𝑧 ∣ ¬ 𝑣 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) } | |
| 2 | dfnul3 | ⊢ ∅ = { 𝑣 ∈ 𝑧 ∣ ¬ 𝑣 ∈ 𝑧 } | |
| 3 | 2 | uneq2i | ⊢ ( { 𝑣 ∈ 𝑧 ∣ ¬ 𝑣 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) } ∪ ∅ ) = ( { 𝑣 ∈ 𝑧 ∣ ¬ 𝑣 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) } ∪ { 𝑣 ∈ 𝑧 ∣ ¬ 𝑣 ∈ 𝑧 } ) |
| 4 | un0 | ⊢ ( { 𝑣 ∈ 𝑧 ∣ ¬ 𝑣 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) } ∪ ∅ ) = { 𝑣 ∈ 𝑧 ∣ ¬ 𝑣 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) } | |
| 5 | unrab | ⊢ ( { 𝑣 ∈ 𝑧 ∣ ¬ 𝑣 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) } ∪ { 𝑣 ∈ 𝑧 ∣ ¬ 𝑣 ∈ 𝑧 } ) = { 𝑣 ∈ 𝑧 ∣ ( ¬ 𝑣 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) ∨ ¬ 𝑣 ∈ 𝑧 ) } | |
| 6 | 3 4 5 | 3eqtr3i | ⊢ { 𝑣 ∈ 𝑧 ∣ ¬ 𝑣 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) } = { 𝑣 ∈ 𝑧 ∣ ( ¬ 𝑣 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) ∨ ¬ 𝑣 ∈ 𝑧 ) } |
| 7 | ianor | ⊢ ( ¬ ( 𝑣 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) ∧ 𝑣 ∈ 𝑧 ) ↔ ( ¬ 𝑣 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) ∨ ¬ 𝑣 ∈ 𝑧 ) ) | |
| 8 | eluni | ⊢ ( 𝑣 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) ↔ ∃ 𝑤 ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ) | |
| 9 | 8 | anbi1i | ⊢ ( ( 𝑣 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) ∧ 𝑣 ∈ 𝑧 ) ↔ ( ∃ 𝑤 ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ∧ 𝑣 ∈ 𝑧 ) ) |
| 10 | df-rex | ⊢ ( ∃ 𝑤 ∈ 𝑥 ¬ ( 𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ¬ ( 𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) ) | |
| 11 | elin | ⊢ ( 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ↔ ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑤 ) ) | |
| 12 | 11 | anbi2i | ⊢ ( ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ↔ ( 𝑧 ≠ 𝑤 ∧ ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑤 ) ) ) |
| 13 | df-an | ⊢ ( ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ↔ ¬ ( 𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) | |
| 14 | 12 13 | bitr3i | ⊢ ( ( 𝑧 ≠ 𝑤 ∧ ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑤 ) ) ↔ ¬ ( 𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) |
| 15 | 14 | anbi2i | ⊢ ( ( 𝑤 ∈ 𝑥 ∧ ( 𝑧 ≠ 𝑤 ∧ ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑤 ) ) ) ↔ ( 𝑤 ∈ 𝑥 ∧ ¬ ( 𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) ) |
| 16 | eldifsn | ⊢ ( 𝑤 ∈ ( 𝑥 ∖ { 𝑧 } ) ↔ ( 𝑤 ∈ 𝑥 ∧ 𝑤 ≠ 𝑧 ) ) | |
| 17 | necom | ⊢ ( 𝑤 ≠ 𝑧 ↔ 𝑧 ≠ 𝑤 ) | |
| 18 | 17 | anbi2i | ⊢ ( ( 𝑤 ∈ 𝑥 ∧ 𝑤 ≠ 𝑧 ) ↔ ( 𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤 ) ) |
| 19 | 16 18 | bitri | ⊢ ( 𝑤 ∈ ( 𝑥 ∖ { 𝑧 } ) ↔ ( 𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤 ) ) |
| 20 | 19 | anbi2i | ⊢ ( ( ( 𝑣 ∈ 𝑤 ∧ 𝑣 ∈ 𝑧 ) ∧ 𝑤 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ↔ ( ( 𝑣 ∈ 𝑤 ∧ 𝑣 ∈ 𝑧 ) ∧ ( 𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤 ) ) ) |
| 21 | ancom | ⊢ ( ( 𝑣 ∈ 𝑤 ∧ 𝑣 ∈ 𝑧 ) ↔ ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑤 ) ) | |
| 22 | 21 | anbi2ci | ⊢ ( ( ( 𝑣 ∈ 𝑤 ∧ 𝑣 ∈ 𝑧 ) ∧ ( 𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤 ) ) ↔ ( ( 𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤 ) ∧ ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑤 ) ) ) |
| 23 | anass | ⊢ ( ( ( 𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤 ) ∧ ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑤 ) ) ↔ ( 𝑤 ∈ 𝑥 ∧ ( 𝑧 ≠ 𝑤 ∧ ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑤 ) ) ) ) | |
| 24 | 20 22 23 | 3bitri | ⊢ ( ( ( 𝑣 ∈ 𝑤 ∧ 𝑣 ∈ 𝑧 ) ∧ 𝑤 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ↔ ( 𝑤 ∈ 𝑥 ∧ ( 𝑧 ≠ 𝑤 ∧ ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑤 ) ) ) ) |
| 25 | an32 | ⊢ ( ( ( 𝑣 ∈ 𝑤 ∧ 𝑣 ∈ 𝑧 ) ∧ 𝑤 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ↔ ( ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ∧ 𝑣 ∈ 𝑧 ) ) | |
| 26 | 24 25 | bitr3i | ⊢ ( ( 𝑤 ∈ 𝑥 ∧ ( 𝑧 ≠ 𝑤 ∧ ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑤 ) ) ) ↔ ( ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ∧ 𝑣 ∈ 𝑧 ) ) |
| 27 | 15 26 | bitr3i | ⊢ ( ( 𝑤 ∈ 𝑥 ∧ ¬ ( 𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) ↔ ( ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ∧ 𝑣 ∈ 𝑧 ) ) |
| 28 | 27 | exbii | ⊢ ( ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ¬ ( 𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) ↔ ∃ 𝑤 ( ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ∧ 𝑣 ∈ 𝑧 ) ) |
| 29 | 19.41v | ⊢ ( ∃ 𝑤 ( ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ∧ 𝑣 ∈ 𝑧 ) ↔ ( ∃ 𝑤 ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ∧ 𝑣 ∈ 𝑧 ) ) | |
| 30 | 10 28 29 | 3bitri | ⊢ ( ∃ 𝑤 ∈ 𝑥 ¬ ( 𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ↔ ( ∃ 𝑤 ( 𝑣 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ∧ 𝑣 ∈ 𝑧 ) ) |
| 31 | rexnal | ⊢ ( ∃ 𝑤 ∈ 𝑥 ¬ ( 𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ↔ ¬ ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) | |
| 32 | 9 30 31 | 3bitr2ri | ⊢ ( ¬ ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ↔ ( 𝑣 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) ∧ 𝑣 ∈ 𝑧 ) ) |
| 33 | 32 | con1bii | ⊢ ( ¬ ( 𝑣 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) ∧ 𝑣 ∈ 𝑧 ) ↔ ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) |
| 34 | 7 33 | bitr3i | ⊢ ( ( ¬ 𝑣 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) ∨ ¬ 𝑣 ∈ 𝑧 ) ↔ ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) |
| 35 | 34 | rabbii | ⊢ { 𝑣 ∈ 𝑧 ∣ ( ¬ 𝑣 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) ∨ ¬ 𝑣 ∈ 𝑧 ) } = { 𝑣 ∈ 𝑧 ∣ ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) } |
| 36 | 1 6 35 | 3eqtri | ⊢ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) = { 𝑣 ∈ 𝑧 ∣ ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) } |
| 37 | 36 | neeq1i | ⊢ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ≠ ∅ ↔ { 𝑣 ∈ 𝑧 ∣ ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) } ≠ ∅ ) |
| 38 | rabn0 | ⊢ ( { 𝑣 ∈ 𝑧 ∣ ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) } ≠ ∅ ↔ ∃ 𝑣 ∈ 𝑧 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) | |
| 39 | 37 38 | bitri | ⊢ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ≠ ∅ ↔ ∃ 𝑣 ∈ 𝑧 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) |