This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, 1 => 2. (Contributed by NM, 5-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kmlem1 | ⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 𝜑 ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 𝜓 ) → ∀ 𝑥 ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 𝜑 → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑣 ∈ V | |
| 2 | 1 | rabex | ⊢ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } ∈ V |
| 3 | raleq | ⊢ ( 𝑥 = { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } → ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ↔ ∀ 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } 𝑧 ≠ ∅ ) ) | |
| 4 | raleq | ⊢ ( 𝑥 = { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } → ( ∀ 𝑤 ∈ 𝑥 𝜑 ↔ ∀ 𝑤 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } 𝜑 ) ) | |
| 5 | 4 | raleqbi1dv | ⊢ ( 𝑥 = { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } → ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 𝜑 ↔ ∀ 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } ∀ 𝑤 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } 𝜑 ) ) |
| 6 | 3 5 | anbi12d | ⊢ ( 𝑥 = { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } → ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 𝜑 ) ↔ ( ∀ 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } ∀ 𝑤 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } 𝜑 ) ) ) |
| 7 | raleq | ⊢ ( 𝑥 = { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } → ( ∀ 𝑧 ∈ 𝑥 𝜓 ↔ ∀ 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } 𝜓 ) ) | |
| 8 | 7 | exbidv | ⊢ ( 𝑥 = { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } → ( ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 𝜓 ↔ ∃ 𝑦 ∀ 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } 𝜓 ) ) |
| 9 | 6 8 | imbi12d | ⊢ ( 𝑥 = { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } → ( ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 𝜑 ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 𝜓 ) ↔ ( ( ∀ 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } ∀ 𝑤 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } 𝜑 ) → ∃ 𝑦 ∀ 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } 𝜓 ) ) ) |
| 10 | 2 9 | spcv | ⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 𝜑 ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 𝜓 ) → ( ( ∀ 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } ∀ 𝑤 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } 𝜑 ) → ∃ 𝑦 ∀ 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } 𝜓 ) ) |
| 11 | 10 | alrimiv | ⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 𝜑 ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 𝜓 ) → ∀ 𝑣 ( ( ∀ 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } ∀ 𝑤 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } 𝜑 ) → ∃ 𝑦 ∀ 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } 𝜓 ) ) |
| 12 | elrabi | ⊢ ( 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } → 𝑧 ∈ 𝑣 ) | |
| 13 | elrabi | ⊢ ( 𝑤 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } → 𝑤 ∈ 𝑣 ) | |
| 14 | 13 | imim1i | ⊢ ( ( 𝑤 ∈ 𝑣 → 𝜑 ) → ( 𝑤 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } → 𝜑 ) ) |
| 15 | 14 | ralimi2 | ⊢ ( ∀ 𝑤 ∈ 𝑣 𝜑 → ∀ 𝑤 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } 𝜑 ) |
| 16 | 12 15 | imim12i | ⊢ ( ( 𝑧 ∈ 𝑣 → ∀ 𝑤 ∈ 𝑣 𝜑 ) → ( 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } → ∀ 𝑤 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } 𝜑 ) ) |
| 17 | 16 | ralimi2 | ⊢ ( ∀ 𝑧 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 𝜑 → ∀ 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } ∀ 𝑤 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } 𝜑 ) |
| 18 | neeq1 | ⊢ ( 𝑢 = 𝑧 → ( 𝑢 ≠ ∅ ↔ 𝑧 ≠ ∅ ) ) | |
| 19 | 18 | elrab | ⊢ ( 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } ↔ ( 𝑧 ∈ 𝑣 ∧ 𝑧 ≠ ∅ ) ) |
| 20 | 19 | simprbi | ⊢ ( 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } → 𝑧 ≠ ∅ ) |
| 21 | 20 | rgen | ⊢ ∀ 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } 𝑧 ≠ ∅ |
| 22 | 17 21 | jctil | ⊢ ( ∀ 𝑧 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 𝜑 → ( ∀ 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } ∀ 𝑤 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } 𝜑 ) ) |
| 23 | 19 | biimpri | ⊢ ( ( 𝑧 ∈ 𝑣 ∧ 𝑧 ≠ ∅ ) → 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } ) |
| 24 | 23 | imim1i | ⊢ ( ( 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } → 𝜓 ) → ( ( 𝑧 ∈ 𝑣 ∧ 𝑧 ≠ ∅ ) → 𝜓 ) ) |
| 25 | 24 | expd | ⊢ ( ( 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } → 𝜓 ) → ( 𝑧 ∈ 𝑣 → ( 𝑧 ≠ ∅ → 𝜓 ) ) ) |
| 26 | 25 | ralimi2 | ⊢ ( ∀ 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } 𝜓 → ∀ 𝑧 ∈ 𝑣 ( 𝑧 ≠ ∅ → 𝜓 ) ) |
| 27 | 26 | eximi | ⊢ ( ∃ 𝑦 ∀ 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } 𝜓 → ∃ 𝑦 ∀ 𝑧 ∈ 𝑣 ( 𝑧 ≠ ∅ → 𝜓 ) ) |
| 28 | 22 27 | imim12i | ⊢ ( ( ( ∀ 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } ∀ 𝑤 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } 𝜑 ) → ∃ 𝑦 ∀ 𝑧 ∈ { 𝑢 ∈ 𝑣 ∣ 𝑢 ≠ ∅ } 𝜓 ) → ( ∀ 𝑧 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 𝜑 → ∃ 𝑦 ∀ 𝑧 ∈ 𝑣 ( 𝑧 ≠ ∅ → 𝜓 ) ) ) |
| 29 | 11 28 | sylg | ⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 𝜑 ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 𝜓 ) → ∀ 𝑣 ( ∀ 𝑧 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 𝜑 → ∃ 𝑦 ∀ 𝑧 ∈ 𝑣 ( 𝑧 ≠ ∅ → 𝜓 ) ) ) |
| 30 | raleq | ⊢ ( 𝑣 = 𝑥 → ( ∀ 𝑤 ∈ 𝑣 𝜑 ↔ ∀ 𝑤 ∈ 𝑥 𝜑 ) ) | |
| 31 | 30 | raleqbi1dv | ⊢ ( 𝑣 = 𝑥 → ( ∀ 𝑧 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 𝜑 ↔ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 𝜑 ) ) |
| 32 | raleq | ⊢ ( 𝑣 = 𝑥 → ( ∀ 𝑧 ∈ 𝑣 ( 𝑧 ≠ ∅ → 𝜓 ) ↔ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → 𝜓 ) ) ) | |
| 33 | 32 | exbidv | ⊢ ( 𝑣 = 𝑥 → ( ∃ 𝑦 ∀ 𝑧 ∈ 𝑣 ( 𝑧 ≠ ∅ → 𝜓 ) ↔ ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → 𝜓 ) ) ) |
| 34 | 31 33 | imbi12d | ⊢ ( 𝑣 = 𝑥 → ( ( ∀ 𝑧 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 𝜑 → ∃ 𝑦 ∀ 𝑧 ∈ 𝑣 ( 𝑧 ≠ ∅ → 𝜓 ) ) ↔ ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 𝜑 → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → 𝜓 ) ) ) ) |
| 35 | 34 | cbvalvw | ⊢ ( ∀ 𝑣 ( ∀ 𝑧 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 𝜑 → ∃ 𝑦 ∀ 𝑧 ∈ 𝑣 ( 𝑧 ≠ ∅ → 𝜓 ) ) ↔ ∀ 𝑥 ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 𝜑 → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → 𝜓 ) ) ) |
| 36 | 29 35 | sylib | ⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 𝜑 ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 𝜓 ) → ∀ 𝑥 ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 𝜑 → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → 𝜓 ) ) ) |