This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 4 => 1. (Contributed by NM, 26-Mar-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kmlem7 | ⊢ ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ¬ ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kmlem6 | ⊢ ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∀ 𝑧 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) | |
| 2 | ralinexa | ⊢ ( ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ↔ ¬ ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) | |
| 3 | 2 | rexbii | ⊢ ( ∃ 𝑣 ∈ 𝑧 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ↔ ∃ 𝑣 ∈ 𝑧 ¬ ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) |
| 4 | rexnal | ⊢ ( ∃ 𝑣 ∈ 𝑧 ¬ ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ↔ ¬ ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) | |
| 5 | 3 4 | bitri | ⊢ ( ∃ 𝑣 ∈ 𝑧 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ↔ ¬ ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) |
| 6 | 5 | ralbii | ⊢ ( ∀ 𝑧 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ↔ ∀ 𝑧 ∈ 𝑥 ¬ ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) |
| 7 | ralnex | ⊢ ( ∀ 𝑧 ∈ 𝑥 ¬ ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ↔ ¬ ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) | |
| 8 | 6 7 | bitri | ⊢ ( ∀ 𝑧 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ↔ ¬ ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) |
| 9 | 1 8 | sylib | ⊢ ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ¬ ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ) |