This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 5 <=> 4. (Contributed by NM, 4-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | kmlem14.1 | ⊢ ( 𝜑 ↔ ( 𝑧 ∈ 𝑦 → ( ( 𝑣 ∈ 𝑥 ∧ 𝑦 ≠ 𝑣 ) ∧ 𝑧 ∈ 𝑣 ) ) ) | |
| kmlem14.2 | ⊢ ( 𝜓 ↔ ( 𝑧 ∈ 𝑥 → ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) | ||
| kmlem14.3 | ⊢ ( 𝜒 ↔ ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) | ||
| Assertion | kmlem14 | ⊢ ( ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ↔ ∃ 𝑦 ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kmlem14.1 | ⊢ ( 𝜑 ↔ ( 𝑧 ∈ 𝑦 → ( ( 𝑣 ∈ 𝑥 ∧ 𝑦 ≠ 𝑣 ) ∧ 𝑧 ∈ 𝑣 ) ) ) | |
| 2 | kmlem14.2 | ⊢ ( 𝜓 ↔ ( 𝑧 ∈ 𝑥 → ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) | |
| 3 | kmlem14.3 | ⊢ ( 𝜒 ↔ ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) | |
| 4 | neeq1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 ≠ 𝑤 ↔ 𝑦 ≠ 𝑤 ) ) | |
| 5 | ineq1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∩ 𝑤 ) = ( 𝑦 ∩ 𝑤 ) ) | |
| 6 | 5 | eleq2d | ⊢ ( 𝑧 = 𝑦 → ( 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ↔ 𝑣 ∈ ( 𝑦 ∩ 𝑤 ) ) ) |
| 7 | 4 6 | anbi12d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ↔ ( 𝑦 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑦 ∩ 𝑤 ) ) ) ) |
| 8 | 7 | rexbidv | ⊢ ( 𝑧 = 𝑦 → ( ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ↔ ∃ 𝑤 ∈ 𝑥 ( 𝑦 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑦 ∩ 𝑤 ) ) ) ) |
| 9 | 8 | raleqbi1dv | ⊢ ( 𝑧 = 𝑦 → ( ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ↔ ∀ 𝑣 ∈ 𝑦 ∃ 𝑤 ∈ 𝑥 ( 𝑦 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑦 ∩ 𝑤 ) ) ) ) |
| 10 | 9 | cbvrexvw | ⊢ ( ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ↔ ∃ 𝑦 ∈ 𝑥 ∀ 𝑣 ∈ 𝑦 ∃ 𝑤 ∈ 𝑥 ( 𝑦 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑦 ∩ 𝑤 ) ) ) |
| 11 | df-rex | ⊢ ( ∃ 𝑦 ∈ 𝑥 ∀ 𝑣 ∈ 𝑦 ∃ 𝑤 ∈ 𝑥 ( 𝑦 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑦 ∩ 𝑤 ) ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑣 ∈ 𝑦 ∃ 𝑤 ∈ 𝑥 ( 𝑦 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑦 ∩ 𝑤 ) ) ) ) | |
| 12 | eleq1w | ⊢ ( 𝑣 = 𝑧 → ( 𝑣 ∈ ( 𝑦 ∩ 𝑤 ) ↔ 𝑧 ∈ ( 𝑦 ∩ 𝑤 ) ) ) | |
| 13 | 12 | anbi2d | ⊢ ( 𝑣 = 𝑧 → ( ( 𝑦 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑦 ∩ 𝑤 ) ) ↔ ( 𝑦 ≠ 𝑤 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑤 ) ) ) ) |
| 14 | 13 | rexbidv | ⊢ ( 𝑣 = 𝑧 → ( ∃ 𝑤 ∈ 𝑥 ( 𝑦 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑦 ∩ 𝑤 ) ) ↔ ∃ 𝑤 ∈ 𝑥 ( 𝑦 ≠ 𝑤 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑤 ) ) ) ) |
| 15 | 14 | cbvralvw | ⊢ ( ∀ 𝑣 ∈ 𝑦 ∃ 𝑤 ∈ 𝑥 ( 𝑦 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑦 ∩ 𝑤 ) ) ↔ ∀ 𝑧 ∈ 𝑦 ∃ 𝑤 ∈ 𝑥 ( 𝑦 ≠ 𝑤 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑤 ) ) ) |
| 16 | df-ral | ⊢ ( ∀ 𝑧 ∈ 𝑦 ∃ 𝑤 ∈ 𝑥 ( 𝑦 ≠ 𝑤 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑤 ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ∈ 𝑥 ( 𝑦 ≠ 𝑤 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑤 ) ) ) ) | |
| 17 | 15 16 | bitri | ⊢ ( ∀ 𝑣 ∈ 𝑦 ∃ 𝑤 ∈ 𝑥 ( 𝑦 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑦 ∩ 𝑤 ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ∈ 𝑥 ( 𝑦 ≠ 𝑤 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑤 ) ) ) ) |
| 18 | 17 | anbi2i | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑣 ∈ 𝑦 ∃ 𝑤 ∈ 𝑥 ( 𝑦 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑦 ∩ 𝑤 ) ) ) ↔ ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ∈ 𝑥 ( 𝑦 ≠ 𝑤 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑤 ) ) ) ) ) |
| 19 | 19.28v | ⊢ ( ∀ 𝑧 ( 𝑦 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ∈ 𝑥 ( 𝑦 ≠ 𝑤 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑤 ) ) ) ) ↔ ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ∈ 𝑥 ( 𝑦 ≠ 𝑤 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑤 ) ) ) ) ) | |
| 20 | neeq2 | ⊢ ( 𝑤 = 𝑣 → ( 𝑦 ≠ 𝑤 ↔ 𝑦 ≠ 𝑣 ) ) | |
| 21 | ineq2 | ⊢ ( 𝑤 = 𝑣 → ( 𝑦 ∩ 𝑤 ) = ( 𝑦 ∩ 𝑣 ) ) | |
| 22 | 21 | eleq2d | ⊢ ( 𝑤 = 𝑣 → ( 𝑧 ∈ ( 𝑦 ∩ 𝑤 ) ↔ 𝑧 ∈ ( 𝑦 ∩ 𝑣 ) ) ) |
| 23 | 20 22 | anbi12d | ⊢ ( 𝑤 = 𝑣 → ( ( 𝑦 ≠ 𝑤 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑤 ) ) ↔ ( 𝑦 ≠ 𝑣 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑣 ) ) ) ) |
| 24 | 23 | cbvrexvw | ⊢ ( ∃ 𝑤 ∈ 𝑥 ( 𝑦 ≠ 𝑤 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑤 ) ) ↔ ∃ 𝑣 ∈ 𝑥 ( 𝑦 ≠ 𝑣 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑣 ) ) ) |
| 25 | df-rex | ⊢ ( ∃ 𝑣 ∈ 𝑥 ( 𝑦 ≠ 𝑣 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑣 ) ) ↔ ∃ 𝑣 ( 𝑣 ∈ 𝑥 ∧ ( 𝑦 ≠ 𝑣 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑣 ) ) ) ) | |
| 26 | 24 25 | bitri | ⊢ ( ∃ 𝑤 ∈ 𝑥 ( 𝑦 ≠ 𝑤 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑤 ) ) ↔ ∃ 𝑣 ( 𝑣 ∈ 𝑥 ∧ ( 𝑦 ≠ 𝑣 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑣 ) ) ) ) |
| 27 | 26 | imbi2i | ⊢ ( ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ∈ 𝑥 ( 𝑦 ≠ 𝑤 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑤 ) ) ) ↔ ( 𝑧 ∈ 𝑦 → ∃ 𝑣 ( 𝑣 ∈ 𝑥 ∧ ( 𝑦 ≠ 𝑣 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑣 ) ) ) ) ) |
| 28 | 19.37v | ⊢ ( ∃ 𝑣 ( 𝑧 ∈ 𝑦 → ( 𝑣 ∈ 𝑥 ∧ ( 𝑦 ≠ 𝑣 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑣 ) ) ) ) ↔ ( 𝑧 ∈ 𝑦 → ∃ 𝑣 ( 𝑣 ∈ 𝑥 ∧ ( 𝑦 ≠ 𝑣 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑣 ) ) ) ) ) | |
| 29 | 27 28 | bitr4i | ⊢ ( ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ∈ 𝑥 ( 𝑦 ≠ 𝑤 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑤 ) ) ) ↔ ∃ 𝑣 ( 𝑧 ∈ 𝑦 → ( 𝑣 ∈ 𝑥 ∧ ( 𝑦 ≠ 𝑣 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑣 ) ) ) ) ) |
| 30 | 29 | anbi2i | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ∈ 𝑥 ( 𝑦 ≠ 𝑤 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑤 ) ) ) ) ↔ ( 𝑦 ∈ 𝑥 ∧ ∃ 𝑣 ( 𝑧 ∈ 𝑦 → ( 𝑣 ∈ 𝑥 ∧ ( 𝑦 ≠ 𝑣 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑣 ) ) ) ) ) ) |
| 31 | 19.42v | ⊢ ( ∃ 𝑣 ( 𝑦 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑦 → ( 𝑣 ∈ 𝑥 ∧ ( 𝑦 ≠ 𝑣 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑣 ) ) ) ) ) ↔ ( 𝑦 ∈ 𝑥 ∧ ∃ 𝑣 ( 𝑧 ∈ 𝑦 → ( 𝑣 ∈ 𝑥 ∧ ( 𝑦 ≠ 𝑣 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑣 ) ) ) ) ) ) | |
| 32 | 19.3v | ⊢ ( ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ↔ ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ) | |
| 33 | elin | ⊢ ( 𝑧 ∈ ( 𝑦 ∩ 𝑣 ) ↔ ( 𝑧 ∈ 𝑦 ∧ 𝑧 ∈ 𝑣 ) ) | |
| 34 | 33 | baibr | ⊢ ( 𝑧 ∈ 𝑦 → ( 𝑧 ∈ 𝑣 ↔ 𝑧 ∈ ( 𝑦 ∩ 𝑣 ) ) ) |
| 35 | 34 | anbi2d | ⊢ ( 𝑧 ∈ 𝑦 → ( ( ( 𝑣 ∈ 𝑥 ∧ 𝑦 ≠ 𝑣 ) ∧ 𝑧 ∈ 𝑣 ) ↔ ( ( 𝑣 ∈ 𝑥 ∧ 𝑦 ≠ 𝑣 ) ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑣 ) ) ) ) |
| 36 | anass | ⊢ ( ( ( 𝑣 ∈ 𝑥 ∧ 𝑦 ≠ 𝑣 ) ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑣 ) ) ↔ ( 𝑣 ∈ 𝑥 ∧ ( 𝑦 ≠ 𝑣 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑣 ) ) ) ) | |
| 37 | 35 36 | bitrdi | ⊢ ( 𝑧 ∈ 𝑦 → ( ( ( 𝑣 ∈ 𝑥 ∧ 𝑦 ≠ 𝑣 ) ∧ 𝑧 ∈ 𝑣 ) ↔ ( 𝑣 ∈ 𝑥 ∧ ( 𝑦 ≠ 𝑣 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑣 ) ) ) ) ) |
| 38 | 37 | pm5.74i | ⊢ ( ( 𝑧 ∈ 𝑦 → ( ( 𝑣 ∈ 𝑥 ∧ 𝑦 ≠ 𝑣 ) ∧ 𝑧 ∈ 𝑣 ) ) ↔ ( 𝑧 ∈ 𝑦 → ( 𝑣 ∈ 𝑥 ∧ ( 𝑦 ≠ 𝑣 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑣 ) ) ) ) ) |
| 39 | 1 38 | bitri | ⊢ ( 𝜑 ↔ ( 𝑧 ∈ 𝑦 → ( 𝑣 ∈ 𝑥 ∧ ( 𝑦 ≠ 𝑣 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑣 ) ) ) ) ) |
| 40 | 39 | anbi2i | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ↔ ( 𝑦 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑦 → ( 𝑣 ∈ 𝑥 ∧ ( 𝑦 ≠ 𝑣 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑣 ) ) ) ) ) ) |
| 41 | 32 40 | bitr2i | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑦 → ( 𝑣 ∈ 𝑥 ∧ ( 𝑦 ≠ 𝑣 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑣 ) ) ) ) ) ↔ ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ) |
| 42 | 41 | exbii | ⊢ ( ∃ 𝑣 ( 𝑦 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑦 → ( 𝑣 ∈ 𝑥 ∧ ( 𝑦 ≠ 𝑣 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑣 ) ) ) ) ) ↔ ∃ 𝑣 ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ) |
| 43 | 30 31 42 | 3bitr2i | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ∈ 𝑥 ( 𝑦 ≠ 𝑤 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑤 ) ) ) ) ↔ ∃ 𝑣 ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ) |
| 44 | 43 | albii | ⊢ ( ∀ 𝑧 ( 𝑦 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ∈ 𝑥 ( 𝑦 ≠ 𝑤 ∧ 𝑧 ∈ ( 𝑦 ∩ 𝑤 ) ) ) ) ↔ ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ) |
| 45 | 18 19 44 | 3bitr2i | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑣 ∈ 𝑦 ∃ 𝑤 ∈ 𝑥 ( 𝑦 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑦 ∩ 𝑤 ) ) ) ↔ ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ) |
| 46 | 45 | exbii | ⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑣 ∈ 𝑦 ∃ 𝑤 ∈ 𝑥 ( 𝑦 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑦 ∩ 𝑤 ) ) ) ↔ ∃ 𝑦 ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ) |
| 47 | 10 11 46 | 3bitri | ⊢ ( ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ↔ ∃ 𝑦 ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ) |