This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kmlem9.1 | ⊢ 𝐴 = { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } | |
| Assertion | kmlem10 | ⊢ ( ∀ ℎ ( ∀ 𝑧 ∈ ℎ ∀ 𝑤 ∈ ℎ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∃ 𝑦 ∀ 𝑧 ∈ ℎ 𝜑 ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝐴 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kmlem9.1 | ⊢ 𝐴 = { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } | |
| 2 | 1 | kmlem9 | ⊢ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) |
| 3 | vex | ⊢ 𝑥 ∈ V | |
| 4 | 3 | abrexex | ⊢ { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } ∈ V |
| 5 | 1 4 | eqeltri | ⊢ 𝐴 ∈ V |
| 6 | raleq | ⊢ ( ℎ = 𝐴 → ( ∀ 𝑤 ∈ ℎ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) | |
| 7 | 6 | raleqbi1dv | ⊢ ( ℎ = 𝐴 → ( ∀ 𝑧 ∈ ℎ ∀ 𝑤 ∈ ℎ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ↔ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
| 8 | raleq | ⊢ ( ℎ = 𝐴 → ( ∀ 𝑧 ∈ ℎ 𝜑 ↔ ∀ 𝑧 ∈ 𝐴 𝜑 ) ) | |
| 9 | 8 | exbidv | ⊢ ( ℎ = 𝐴 → ( ∃ 𝑦 ∀ 𝑧 ∈ ℎ 𝜑 ↔ ∃ 𝑦 ∀ 𝑧 ∈ 𝐴 𝜑 ) ) |
| 10 | 7 9 | imbi12d | ⊢ ( ℎ = 𝐴 → ( ( ∀ 𝑧 ∈ ℎ ∀ 𝑤 ∈ ℎ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∃ 𝑦 ∀ 𝑧 ∈ ℎ 𝜑 ) ↔ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝐴 𝜑 ) ) ) |
| 11 | 5 10 | spcv | ⊢ ( ∀ ℎ ( ∀ 𝑧 ∈ ℎ ∀ 𝑤 ∈ ℎ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∃ 𝑦 ∀ 𝑧 ∈ ℎ 𝜑 ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝐴 𝜑 ) ) |
| 12 | 2 11 | mpi | ⊢ ( ∀ ℎ ( ∀ 𝑧 ∈ ℎ ∀ 𝑤 ∈ ℎ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∃ 𝑦 ∀ 𝑧 ∈ ℎ 𝜑 ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝐴 𝜑 ) |