This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 27-Mar-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kmlem9.1 | ⊢ 𝐴 = { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } | |
| Assertion | kmlem12 | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ≠ ∅ → ( ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) → ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑦 ∩ ∪ 𝐴 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kmlem9.1 | ⊢ 𝐴 = { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } | |
| 2 | difeq1 | ⊢ ( 𝑡 = 𝑧 → ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) = ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) | |
| 3 | sneq | ⊢ ( 𝑡 = 𝑧 → { 𝑡 } = { 𝑧 } ) | |
| 4 | 3 | difeq2d | ⊢ ( 𝑡 = 𝑧 → ( 𝑥 ∖ { 𝑡 } ) = ( 𝑥 ∖ { 𝑧 } ) ) |
| 5 | 4 | unieqd | ⊢ ( 𝑡 = 𝑧 → ∪ ( 𝑥 ∖ { 𝑡 } ) = ∪ ( 𝑥 ∖ { 𝑧 } ) ) |
| 6 | 5 | difeq2d | ⊢ ( 𝑡 = 𝑧 → ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) = ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) |
| 7 | 2 6 | eqtrd | ⊢ ( 𝑡 = 𝑧 → ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) = ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) |
| 8 | 7 | neeq1d | ⊢ ( 𝑡 = 𝑧 → ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ≠ ∅ ↔ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ≠ ∅ ) ) |
| 9 | 8 | cbvralvw | ⊢ ( ∀ 𝑡 ∈ 𝑥 ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ≠ ∅ ↔ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ≠ ∅ ) |
| 10 | 7 | ineq1d | ⊢ ( 𝑡 = 𝑧 → ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) = ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑦 ) ) |
| 11 | 10 | eleq2d | ⊢ ( 𝑡 = 𝑧 → ( 𝑣 ∈ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ↔ 𝑣 ∈ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑦 ) ) ) |
| 12 | 11 | eubidv | ⊢ ( 𝑡 = 𝑧 → ( ∃! 𝑣 𝑣 ∈ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ↔ ∃! 𝑣 𝑣 ∈ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑦 ) ) ) |
| 13 | 12 | cbvralvw | ⊢ ( ∀ 𝑡 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑦 ) ) |
| 14 | 9 13 | imbi12i | ⊢ ( ( ∀ 𝑡 ∈ 𝑥 ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ≠ ∅ → ∀ 𝑡 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ) ↔ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ≠ ∅ → ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑦 ) ) ) |
| 15 | in12 | ⊢ ( 𝑧 ∩ ( 𝑦 ∩ ∪ 𝐴 ) ) = ( 𝑦 ∩ ( 𝑧 ∩ ∪ 𝐴 ) ) | |
| 16 | incom | ⊢ ( 𝑦 ∩ ( 𝑧 ∩ ∪ 𝐴 ) ) = ( ( 𝑧 ∩ ∪ 𝐴 ) ∩ 𝑦 ) | |
| 17 | 15 16 | eqtri | ⊢ ( 𝑧 ∩ ( 𝑦 ∩ ∪ 𝐴 ) ) = ( ( 𝑧 ∩ ∪ 𝐴 ) ∩ 𝑦 ) |
| 18 | 1 | kmlem11 | ⊢ ( 𝑧 ∈ 𝑥 → ( 𝑧 ∩ ∪ 𝐴 ) = ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) |
| 19 | 18 | ineq1d | ⊢ ( 𝑧 ∈ 𝑥 → ( ( 𝑧 ∩ ∪ 𝐴 ) ∩ 𝑦 ) = ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑦 ) ) |
| 20 | 17 19 | eqtr2id | ⊢ ( 𝑧 ∈ 𝑥 → ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑦 ) = ( 𝑧 ∩ ( 𝑦 ∩ ∪ 𝐴 ) ) ) |
| 21 | 20 | eleq2d | ⊢ ( 𝑧 ∈ 𝑥 → ( 𝑣 ∈ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑦 ) ↔ 𝑣 ∈ ( 𝑧 ∩ ( 𝑦 ∩ ∪ 𝐴 ) ) ) ) |
| 22 | 21 | eubidv | ⊢ ( 𝑧 ∈ 𝑥 → ( ∃! 𝑣 𝑣 ∈ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑦 ) ↔ ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑦 ∩ ∪ 𝐴 ) ) ) ) |
| 23 | ax-1 | ⊢ ( ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑦 ∩ ∪ 𝐴 ) ) → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑦 ∩ ∪ 𝐴 ) ) ) ) | |
| 24 | 22 23 | biimtrdi | ⊢ ( 𝑧 ∈ 𝑥 → ( ∃! 𝑣 𝑣 ∈ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑦 ) → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑦 ∩ ∪ 𝐴 ) ) ) ) ) |
| 25 | 24 | ralimia | ⊢ ( ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑦 ) → ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑦 ∩ ∪ 𝐴 ) ) ) ) |
| 26 | 25 | imim2i | ⊢ ( ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ≠ ∅ → ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑦 ) ) → ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ≠ ∅ → ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑦 ∩ ∪ 𝐴 ) ) ) ) ) |
| 27 | 14 26 | sylbi | ⊢ ( ( ∀ 𝑡 ∈ 𝑥 ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ≠ ∅ → ∀ 𝑡 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ) → ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ≠ ∅ → ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑦 ∩ ∪ 𝐴 ) ) ) ) ) |
| 28 | 1 | raleqi | ⊢ ( ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∀ 𝑧 ∈ { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
| 29 | df-ral | ⊢ ( ∀ 𝑧 ∈ { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) | |
| 30 | vex | ⊢ 𝑧 ∈ V | |
| 31 | eqeq1 | ⊢ ( 𝑢 = 𝑧 → ( 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ↔ 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) ) | |
| 32 | 31 | rexbidv | ⊢ ( 𝑢 = 𝑧 → ( ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ↔ ∃ 𝑡 ∈ 𝑥 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) ) |
| 33 | 30 32 | elab | ⊢ ( 𝑧 ∈ { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } ↔ ∃ 𝑡 ∈ 𝑥 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) |
| 34 | 33 | imbi1i | ⊢ ( ( 𝑧 ∈ { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ↔ ( ∃ 𝑡 ∈ 𝑥 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 35 | r19.23v | ⊢ ( ∀ 𝑡 ∈ 𝑥 ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ↔ ( ∃ 𝑡 ∈ 𝑥 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) | |
| 36 | 34 35 | bitr4i | ⊢ ( ( 𝑧 ∈ { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ↔ ∀ 𝑡 ∈ 𝑥 ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 37 | 36 | albii | ⊢ ( ∀ 𝑧 ( 𝑧 ∈ { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ↔ ∀ 𝑧 ∀ 𝑡 ∈ 𝑥 ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 38 | ralcom4 | ⊢ ( ∀ 𝑡 ∈ 𝑥 ∀ 𝑧 ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ↔ ∀ 𝑧 ∀ 𝑡 ∈ 𝑥 ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) | |
| 39 | vex | ⊢ 𝑡 ∈ V | |
| 40 | 39 | difexi | ⊢ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∈ V |
| 41 | neeq1 | ⊢ ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) → ( 𝑧 ≠ ∅ ↔ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ≠ ∅ ) ) | |
| 42 | ineq1 | ⊢ ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) → ( 𝑧 ∩ 𝑦 ) = ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ) | |
| 43 | 42 | eleq2d | ⊢ ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) → ( 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ 𝑣 ∈ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ) ) |
| 44 | 43 | eubidv | ⊢ ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) → ( ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∃! 𝑣 𝑣 ∈ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ) ) |
| 45 | 41 44 | imbi12d | ⊢ ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) → ( ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ) ) ) |
| 46 | 40 45 | ceqsalv | ⊢ ( ∀ 𝑧 ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ↔ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ) ) |
| 47 | 46 | ralbii | ⊢ ( ∀ 𝑡 ∈ 𝑥 ∀ 𝑧 ( 𝑧 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ↔ ∀ 𝑡 ∈ 𝑥 ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ) ) |
| 48 | 37 38 47 | 3bitr2i | ⊢ ( ∀ 𝑧 ( 𝑧 ∈ { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } → ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ↔ ∀ 𝑡 ∈ 𝑥 ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ) ) |
| 49 | 28 29 48 | 3bitri | ⊢ ( ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∀ 𝑡 ∈ 𝑥 ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ) ) |
| 50 | ralim | ⊢ ( ∀ 𝑡 ∈ 𝑥 ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ) → ( ∀ 𝑡 ∈ 𝑥 ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ≠ ∅ → ∀ 𝑡 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ) ) | |
| 51 | 49 50 | sylbi | ⊢ ( ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) → ( ∀ 𝑡 ∈ 𝑥 ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ≠ ∅ → ∀ 𝑡 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑦 ) ) ) |
| 52 | 27 51 | syl11 | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ≠ ∅ → ( ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) → ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ( 𝑦 ∩ ∪ 𝐴 ) ) ) ) ) |