This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Kelley's choice, basic form: if a collection of sets can be cast as closed sets in the factors of a topology, and there is a definable element in each topology (which need not be in the closed set - if it were this would be trivial), then compactness (via finite intersection) guarantees that the final product is nonempty. (Contributed by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | kelac1.z | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ≠ ∅ ) | |
| kelac1.j | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐽 ∈ Top ) | ||
| kelac1.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐶 ∈ ( Clsd ‘ 𝐽 ) ) | ||
| kelac1.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐵 : 𝑆 –1-1-onto→ 𝐶 ) | ||
| kelac1.u | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑈 ∈ ∪ 𝐽 ) | ||
| kelac1.k | ⊢ ( 𝜑 → ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) ) ∈ Comp ) | ||
| Assertion | kelac1 | ⊢ ( 𝜑 → X 𝑥 ∈ 𝐼 𝑆 ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kelac1.z | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ≠ ∅ ) | |
| 2 | kelac1.j | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐽 ∈ Top ) | |
| 3 | kelac1.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐶 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 4 | kelac1.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐵 : 𝑆 –1-1-onto→ 𝐶 ) | |
| 5 | kelac1.u | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑈 ∈ ∪ 𝐽 ) | |
| 6 | kelac1.k | ⊢ ( 𝜑 → ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) ) ∈ Comp ) | |
| 7 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 8 | 7 | cldss | ⊢ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) → 𝐶 ⊆ ∪ 𝐽 ) |
| 9 | 3 8 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐶 ⊆ ∪ 𝐽 ) |
| 10 | 9 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝐶 ⊆ ∪ 𝐽 ) |
| 11 | boxriin | ⊢ ( ∀ 𝑥 ∈ 𝐼 𝐶 ⊆ ∪ 𝐽 → X 𝑥 ∈ 𝐼 𝐶 = ( X 𝑥 ∈ 𝐼 ∪ 𝐽 ∩ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝜑 → X 𝑥 ∈ 𝐼 𝐶 = ( X 𝑥 ∈ 𝐼 ∪ 𝐽 ∩ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) ) |
| 13 | cmptop | ⊢ ( ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) ) ∈ Comp → ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) ) ∈ Top ) | |
| 14 | 0ntop | ⊢ ¬ ∅ ∈ Top | |
| 15 | fvprc | ⊢ ( ¬ ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) ∈ V → ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) ) = ∅ ) | |
| 16 | 15 | eleq1d | ⊢ ( ¬ ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) ∈ V → ( ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) ) ∈ Top ↔ ∅ ∈ Top ) ) |
| 17 | 14 16 | mtbiri | ⊢ ( ¬ ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) ∈ V → ¬ ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) ) ∈ Top ) |
| 18 | 17 | con4i | ⊢ ( ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) ) ∈ Top → ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) ∈ V ) |
| 19 | 6 13 18 | 3syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) ∈ V ) |
| 20 | 2 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) : 𝐼 ⟶ Top ) |
| 21 | dmfex | ⊢ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) ∈ V ∧ ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) : 𝐼 ⟶ Top ) → 𝐼 ∈ V ) | |
| 22 | 19 20 21 | syl2anc | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 23 | 2 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝐽 ∈ Top ) |
| 24 | eqid | ⊢ ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) ) = ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) ) | |
| 25 | 24 | ptunimpt | ⊢ ( ( 𝐼 ∈ V ∧ ∀ 𝑥 ∈ 𝐼 𝐽 ∈ Top ) → X 𝑥 ∈ 𝐼 ∪ 𝐽 = ∪ ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) ) ) |
| 26 | 22 23 25 | syl2anc | ⊢ ( 𝜑 → X 𝑥 ∈ 𝐼 ∪ 𝐽 = ∪ ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) ) ) |
| 27 | 26 | ineq1d | ⊢ ( 𝜑 → ( X 𝑥 ∈ 𝐼 ∪ 𝐽 ∩ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) = ( ∪ ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) ) ∩ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) ) |
| 28 | eqid | ⊢ ∪ ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) ) = ∪ ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) ) | |
| 29 | 7 | topcld | ⊢ ( 𝐽 ∈ Top → ∪ 𝐽 ∈ ( Clsd ‘ 𝐽 ) ) |
| 30 | 2 29 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∪ 𝐽 ∈ ( Clsd ‘ 𝐽 ) ) |
| 31 | 3 30 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 32 | 22 2 31 | ptcldmpt | ⊢ ( 𝜑 → X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ∈ ( Clsd ‘ ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) ) ) ) |
| 33 | 32 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ∈ ( Clsd ‘ ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) ) ) ) |
| 34 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) → 𝑧 ∈ Fin ) | |
| 35 | f1ofo | ⊢ ( 𝐵 : 𝑆 –1-1-onto→ 𝐶 → 𝐵 : 𝑆 –onto→ 𝐶 ) | |
| 36 | foima | ⊢ ( 𝐵 : 𝑆 –onto→ 𝐶 → ( 𝐵 “ 𝑆 ) = 𝐶 ) | |
| 37 | 4 35 36 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐵 “ 𝑆 ) = 𝐶 ) |
| 38 | 37 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐶 = ( 𝐵 “ 𝑆 ) ) |
| 39 | f1ofn | ⊢ ( 𝐵 : 𝑆 –1-1-onto→ 𝐶 → 𝐵 Fn 𝑆 ) | |
| 40 | 4 39 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐵 Fn 𝑆 ) |
| 41 | ssid | ⊢ 𝑆 ⊆ 𝑆 | |
| 42 | fnimaeq0 | ⊢ ( ( 𝐵 Fn 𝑆 ∧ 𝑆 ⊆ 𝑆 ) → ( ( 𝐵 “ 𝑆 ) = ∅ ↔ 𝑆 = ∅ ) ) | |
| 43 | 40 41 42 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐵 “ 𝑆 ) = ∅ ↔ 𝑆 = ∅ ) ) |
| 44 | 43 | necon3bid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐵 “ 𝑆 ) ≠ ∅ ↔ 𝑆 ≠ ∅ ) ) |
| 45 | 1 44 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐵 “ 𝑆 ) ≠ ∅ ) |
| 46 | 38 45 | eqnetrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐶 ≠ ∅ ) |
| 47 | n0 | ⊢ ( 𝐶 ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ 𝐶 ) | |
| 48 | 46 47 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∃ 𝑤 𝑤 ∈ 𝐶 ) |
| 49 | rexv | ⊢ ( ∃ 𝑤 ∈ V 𝑤 ∈ 𝐶 ↔ ∃ 𝑤 𝑤 ∈ 𝐶 ) | |
| 50 | 48 49 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∃ 𝑤 ∈ V 𝑤 ∈ 𝐶 ) |
| 51 | 50 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ∃ 𝑤 ∈ V 𝑤 ∈ 𝐶 ) |
| 52 | ssralv | ⊢ ( 𝑧 ⊆ 𝐼 → ( ∀ 𝑥 ∈ 𝐼 ∃ 𝑤 ∈ V 𝑤 ∈ 𝐶 → ∀ 𝑥 ∈ 𝑧 ∃ 𝑤 ∈ V 𝑤 ∈ 𝐶 ) ) | |
| 53 | 52 | adantr | ⊢ ( ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) → ( ∀ 𝑥 ∈ 𝐼 ∃ 𝑤 ∈ V 𝑤 ∈ 𝐶 → ∀ 𝑥 ∈ 𝑧 ∃ 𝑤 ∈ V 𝑤 ∈ 𝐶 ) ) |
| 54 | 51 53 | mpan9 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) → ∀ 𝑥 ∈ 𝑧 ∃ 𝑤 ∈ V 𝑤 ∈ 𝐶 ) |
| 55 | eleq1 | ⊢ ( 𝑤 = ( 𝑓 ‘ 𝑥 ) → ( 𝑤 ∈ 𝐶 ↔ ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) | |
| 56 | 55 | ac6sfi | ⊢ ( ( 𝑧 ∈ Fin ∧ ∀ 𝑥 ∈ 𝑧 ∃ 𝑤 ∈ V 𝑤 ∈ 𝐶 ) → ∃ 𝑓 ( 𝑓 : 𝑧 ⟶ V ∧ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 57 | 34 54 56 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) → ∃ 𝑓 ( 𝑓 : 𝑧 ⟶ V ∧ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) |
| 58 | 26 | eqcomd | ⊢ ( 𝜑 → ∪ ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) ) = X 𝑥 ∈ 𝐼 ∪ 𝐽 ) |
| 59 | 58 | ineq1d | ⊢ ( 𝜑 → ( ∪ ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) ) ∩ ∩ 𝑦 ∈ 𝑧 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) = ( X 𝑥 ∈ 𝐼 ∪ 𝐽 ∩ ∩ 𝑦 ∈ 𝑧 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) ) |
| 60 | 59 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) → ( ∪ ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) ) ∩ ∩ 𝑦 ∈ 𝑧 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) = ( X 𝑥 ∈ 𝐼 ∪ 𝐽 ∩ ∩ 𝑦 ∈ 𝑧 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) ) |
| 61 | iftrue | ⊢ ( 𝑥 ∈ 𝑧 → if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) = ( 𝑓 ‘ 𝑥 ) ) | |
| 62 | 61 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) → if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) = ( 𝑓 ‘ 𝑥 ) ) |
| 63 | simpll | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ 𝑥 ∈ 𝑧 ) → 𝜑 ) | |
| 64 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) → 𝑧 ⊆ 𝐼 ) | |
| 65 | 64 | sselda | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ 𝑥 ∈ 𝑧 ) → 𝑥 ∈ 𝐼 ) |
| 66 | 63 65 9 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ 𝑥 ∈ 𝑧 ) → 𝐶 ⊆ ∪ 𝐽 ) |
| 67 | 66 | sseld | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ 𝑥 ∈ 𝑧 ) → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 → ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝐽 ) ) |
| 68 | 67 | impr | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) → ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝐽 ) |
| 69 | 62 68 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) → if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ ∪ 𝐽 ) |
| 70 | 69 | expr | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ 𝑥 ∈ 𝑧 ) → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 → if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ ∪ 𝐽 ) ) |
| 71 | 70 | ralimdva | ⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) → ( ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 → ∀ 𝑥 ∈ 𝑧 if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ ∪ 𝐽 ) ) |
| 72 | 71 | imp | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) → ∀ 𝑥 ∈ 𝑧 if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ ∪ 𝐽 ) |
| 73 | eldifn | ⊢ ( 𝑥 ∈ ( 𝐼 ∖ 𝑧 ) → ¬ 𝑥 ∈ 𝑧 ) | |
| 74 | 73 | iffalsed | ⊢ ( 𝑥 ∈ ( 𝐼 ∖ 𝑧 ) → if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) = 𝑈 ) |
| 75 | 74 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ 𝑧 ) ) → if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) = 𝑈 ) |
| 76 | eldifi | ⊢ ( 𝑥 ∈ ( 𝐼 ∖ 𝑧 ) → 𝑥 ∈ 𝐼 ) | |
| 77 | 76 5 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ 𝑧 ) ) → 𝑈 ∈ ∪ 𝐽 ) |
| 78 | 75 77 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ 𝑧 ) ) → if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ ∪ 𝐽 ) |
| 79 | 78 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐼 ∖ 𝑧 ) if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ ∪ 𝐽 ) |
| 80 | 79 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) → ∀ 𝑥 ∈ ( 𝐼 ∖ 𝑧 ) if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ ∪ 𝐽 ) |
| 81 | ralun | ⊢ ( ( ∀ 𝑥 ∈ 𝑧 if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ ∪ 𝐽 ∧ ∀ 𝑥 ∈ ( 𝐼 ∖ 𝑧 ) if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ ∪ 𝐽 ) → ∀ 𝑥 ∈ ( 𝑧 ∪ ( 𝐼 ∖ 𝑧 ) ) if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ ∪ 𝐽 ) | |
| 82 | 72 80 81 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) → ∀ 𝑥 ∈ ( 𝑧 ∪ ( 𝐼 ∖ 𝑧 ) ) if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ ∪ 𝐽 ) |
| 83 | undif | ⊢ ( 𝑧 ⊆ 𝐼 ↔ ( 𝑧 ∪ ( 𝐼 ∖ 𝑧 ) ) = 𝐼 ) | |
| 84 | 83 | biimpi | ⊢ ( 𝑧 ⊆ 𝐼 → ( 𝑧 ∪ ( 𝐼 ∖ 𝑧 ) ) = 𝐼 ) |
| 85 | 84 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) → ( 𝑧 ∪ ( 𝐼 ∖ 𝑧 ) ) = 𝐼 ) |
| 86 | 85 | raleqdv | ⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) → ( ∀ 𝑥 ∈ ( 𝑧 ∪ ( 𝐼 ∖ 𝑧 ) ) if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ ∪ 𝐽 ↔ ∀ 𝑥 ∈ 𝐼 if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ ∪ 𝐽 ) ) |
| 87 | 86 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) → ( ∀ 𝑥 ∈ ( 𝑧 ∪ ( 𝐼 ∖ 𝑧 ) ) if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ ∪ 𝐽 ↔ ∀ 𝑥 ∈ 𝐼 if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ ∪ 𝐽 ) ) |
| 88 | 82 87 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) → ∀ 𝑥 ∈ 𝐼 if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ ∪ 𝐽 ) |
| 89 | 22 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) → 𝐼 ∈ V ) |
| 90 | mptelixpg | ⊢ ( 𝐼 ∈ V → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ) ∈ X 𝑥 ∈ 𝐼 ∪ 𝐽 ↔ ∀ 𝑥 ∈ 𝐼 if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ ∪ 𝐽 ) ) | |
| 91 | 89 90 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ) ∈ X 𝑥 ∈ 𝐼 ∪ 𝐽 ↔ ∀ 𝑥 ∈ 𝐼 if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ ∪ 𝐽 ) ) |
| 92 | 88 91 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ) ∈ X 𝑥 ∈ 𝐼 ∪ 𝐽 ) |
| 93 | eleq2 | ⊢ ( 𝐶 = if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ↔ ( 𝑓 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) ) | |
| 94 | eleq2 | ⊢ ( ∪ 𝐽 = if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) → ( ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝐽 ↔ ( 𝑓 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) ) | |
| 95 | simplrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) ∧ 𝑥 = 𝑦 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) | |
| 96 | 68 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ( 𝑓 ‘ 𝑥 ) ∈ ∪ 𝐽 ) |
| 97 | 93 94 95 96 | ifbothda | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) → ( 𝑓 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) |
| 98 | 62 97 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ( 𝑥 ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) → if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) |
| 99 | 98 | expr | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ 𝑥 ∈ 𝑧 ) → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 → if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) ) |
| 100 | 99 | ralimdva | ⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) → ( ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 → ∀ 𝑥 ∈ 𝑧 if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) ) |
| 101 | 100 | imp | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) → ∀ 𝑥 ∈ 𝑧 if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) |
| 102 | 101 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ∧ 𝑦 ∈ 𝑧 ) → ∀ 𝑥 ∈ 𝑧 if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) |
| 103 | 77 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑧 ) ∧ 𝑥 ∈ ( 𝐼 ∖ 𝑧 ) ) → 𝑈 ∈ ∪ 𝐽 ) |
| 104 | 74 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑧 ) ∧ 𝑥 ∈ ( 𝐼 ∖ 𝑧 ) ) → if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) = 𝑈 ) |
| 105 | disjdifr | ⊢ ( ( 𝐼 ∖ 𝑧 ) ∩ 𝑧 ) = ∅ | |
| 106 | 105 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑧 ) ∧ 𝑥 ∈ ( 𝐼 ∖ 𝑧 ) ) → ( ( 𝐼 ∖ 𝑧 ) ∩ 𝑧 ) = ∅ ) |
| 107 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑧 ) ∧ 𝑥 ∈ ( 𝐼 ∖ 𝑧 ) ) → 𝑥 ∈ ( 𝐼 ∖ 𝑧 ) ) | |
| 108 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑧 ) ∧ 𝑥 ∈ ( 𝐼 ∖ 𝑧 ) ) → 𝑦 ∈ 𝑧 ) | |
| 109 | disjne | ⊢ ( ( ( ( 𝐼 ∖ 𝑧 ) ∩ 𝑧 ) = ∅ ∧ 𝑥 ∈ ( 𝐼 ∖ 𝑧 ) ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ≠ 𝑦 ) | |
| 110 | 106 107 108 109 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑧 ) ∧ 𝑥 ∈ ( 𝐼 ∖ 𝑧 ) ) → 𝑥 ≠ 𝑦 ) |
| 111 | 110 | neneqd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑧 ) ∧ 𝑥 ∈ ( 𝐼 ∖ 𝑧 ) ) → ¬ 𝑥 = 𝑦 ) |
| 112 | 111 | iffalsed | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑧 ) ∧ 𝑥 ∈ ( 𝐼 ∖ 𝑧 ) ) → if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) = ∪ 𝐽 ) |
| 113 | 103 104 112 | 3eltr4d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑧 ) ∧ 𝑥 ∈ ( 𝐼 ∖ 𝑧 ) ) → if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) |
| 114 | 113 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑧 ) → ∀ 𝑥 ∈ ( 𝐼 ∖ 𝑧 ) if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) |
| 115 | 114 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ 𝑦 ∈ 𝑧 ) → ∀ 𝑥 ∈ ( 𝐼 ∖ 𝑧 ) if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) |
| 116 | 115 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ∧ 𝑦 ∈ 𝑧 ) → ∀ 𝑥 ∈ ( 𝐼 ∖ 𝑧 ) if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) |
| 117 | ralun | ⊢ ( ( ∀ 𝑥 ∈ 𝑧 if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ∧ ∀ 𝑥 ∈ ( 𝐼 ∖ 𝑧 ) if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) → ∀ 𝑥 ∈ ( 𝑧 ∪ ( 𝐼 ∖ 𝑧 ) ) if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) | |
| 118 | 102 116 117 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ∧ 𝑦 ∈ 𝑧 ) → ∀ 𝑥 ∈ ( 𝑧 ∪ ( 𝐼 ∖ 𝑧 ) ) if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) |
| 119 | 85 | raleqdv | ⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) → ( ∀ 𝑥 ∈ ( 𝑧 ∪ ( 𝐼 ∖ 𝑧 ) ) if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ↔ ∀ 𝑥 ∈ 𝐼 if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) ) |
| 120 | 119 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ∧ 𝑦 ∈ 𝑧 ) → ( ∀ 𝑥 ∈ ( 𝑧 ∪ ( 𝐼 ∖ 𝑧 ) ) if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ↔ ∀ 𝑥 ∈ 𝐼 if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) ) |
| 121 | 118 120 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ∧ 𝑦 ∈ 𝑧 ) → ∀ 𝑥 ∈ 𝐼 if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) |
| 122 | 22 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ∧ 𝑦 ∈ 𝑧 ) → 𝐼 ∈ V ) |
| 123 | mptelixpg | ⊢ ( 𝐼 ∈ V → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ) ∈ X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ↔ ∀ 𝑥 ∈ 𝐼 if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) ) | |
| 124 | 122 123 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ∧ 𝑦 ∈ 𝑧 ) → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ) ∈ X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ↔ ∀ 𝑥 ∈ 𝐼 if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ∈ if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) ) |
| 125 | 121 124 | mpbird | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ∧ 𝑦 ∈ 𝑧 ) → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ) ∈ X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) |
| 126 | 125 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) → ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ) ∈ X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) |
| 127 | mptexg | ⊢ ( 𝐼 ∈ V → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ) ∈ V ) | |
| 128 | 22 127 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ) ∈ V ) |
| 129 | 128 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ) ∈ V ) |
| 130 | eliin | ⊢ ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ) ∈ V → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ) ∈ ∩ 𝑦 ∈ 𝑧 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ↔ ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ) ∈ X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) ) | |
| 131 | 129 130 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ) ∈ ∩ 𝑦 ∈ 𝑧 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ↔ ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ) ∈ X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) ) |
| 132 | 126 131 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ) ∈ ∩ 𝑦 ∈ 𝑧 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) |
| 133 | 92 132 | elind | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑧 , ( 𝑓 ‘ 𝑥 ) , 𝑈 ) ) ∈ ( X 𝑥 ∈ 𝐼 ∪ 𝐽 ∩ ∩ 𝑦 ∈ 𝑧 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) ) |
| 134 | 133 | ne0d | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) → ( X 𝑥 ∈ 𝐼 ∪ 𝐽 ∩ ∩ 𝑦 ∈ 𝑧 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) ≠ ∅ ) |
| 135 | 60 134 | eqnetrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) → ( ∪ ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) ) ∩ ∩ 𝑦 ∈ 𝑧 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) ≠ ∅ ) |
| 136 | 135 | adantrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) ∧ ( 𝑓 : 𝑧 ⟶ V ∧ ∀ 𝑥 ∈ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) → ( ∪ ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) ) ∩ ∩ 𝑦 ∈ 𝑧 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) ≠ ∅ ) |
| 137 | 57 136 | exlimddv | ⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin ) ) → ( ∪ ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) ) ∩ ∩ 𝑦 ∈ 𝑧 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) ≠ ∅ ) |
| 138 | 28 6 33 137 | cmpfiiin | ⊢ ( 𝜑 → ( ∪ ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ 𝐽 ) ) ∩ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) ≠ ∅ ) |
| 139 | 27 138 | eqnetrd | ⊢ ( 𝜑 → ( X 𝑥 ∈ 𝐼 ∪ 𝐽 ∩ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐶 , ∪ 𝐽 ) ) ≠ ∅ ) |
| 140 | 12 139 | eqnetrd | ⊢ ( 𝜑 → X 𝑥 ∈ 𝐼 𝐶 ≠ ∅ ) |
| 141 | n0 | ⊢ ( X 𝑥 ∈ 𝐼 𝐶 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ X 𝑥 ∈ 𝐼 𝐶 ) | |
| 142 | 140 141 | sylib | ⊢ ( 𝜑 → ∃ 𝑦 𝑦 ∈ X 𝑥 ∈ 𝐼 𝐶 ) |
| 143 | elixp2 | ⊢ ( 𝑦 ∈ X 𝑥 ∈ 𝐼 𝐶 ↔ ( 𝑦 ∈ V ∧ 𝑦 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑦 ‘ 𝑥 ) ∈ 𝐶 ) ) | |
| 144 | 143 | simp3bi | ⊢ ( 𝑦 ∈ X 𝑥 ∈ 𝐼 𝐶 → ∀ 𝑥 ∈ 𝐼 ( 𝑦 ‘ 𝑥 ) ∈ 𝐶 ) |
| 145 | f1ocnv | ⊢ ( 𝐵 : 𝑆 –1-1-onto→ 𝐶 → ◡ 𝐵 : 𝐶 –1-1-onto→ 𝑆 ) | |
| 146 | f1of | ⊢ ( ◡ 𝐵 : 𝐶 –1-1-onto→ 𝑆 → ◡ 𝐵 : 𝐶 ⟶ 𝑆 ) | |
| 147 | ffvelcdm | ⊢ ( ( ◡ 𝐵 : 𝐶 ⟶ 𝑆 ∧ ( 𝑦 ‘ 𝑥 ) ∈ 𝐶 ) → ( ◡ 𝐵 ‘ ( 𝑦 ‘ 𝑥 ) ) ∈ 𝑆 ) | |
| 148 | 147 | ex | ⊢ ( ◡ 𝐵 : 𝐶 ⟶ 𝑆 → ( ( 𝑦 ‘ 𝑥 ) ∈ 𝐶 → ( ◡ 𝐵 ‘ ( 𝑦 ‘ 𝑥 ) ) ∈ 𝑆 ) ) |
| 149 | 4 145 146 148 | 4syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑦 ‘ 𝑥 ) ∈ 𝐶 → ( ◡ 𝐵 ‘ ( 𝑦 ‘ 𝑥 ) ) ∈ 𝑆 ) ) |
| 150 | 149 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐼 ( 𝑦 ‘ 𝑥 ) ∈ 𝐶 → ∀ 𝑥 ∈ 𝐼 ( ◡ 𝐵 ‘ ( 𝑦 ‘ 𝑥 ) ) ∈ 𝑆 ) ) |
| 151 | 150 | imp | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑦 ‘ 𝑥 ) ∈ 𝐶 ) → ∀ 𝑥 ∈ 𝐼 ( ◡ 𝐵 ‘ ( 𝑦 ‘ 𝑥 ) ) ∈ 𝑆 ) |
| 152 | 144 151 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ X 𝑥 ∈ 𝐼 𝐶 ) → ∀ 𝑥 ∈ 𝐼 ( ◡ 𝐵 ‘ ( 𝑦 ‘ 𝑥 ) ) ∈ 𝑆 ) |
| 153 | mptelixpg | ⊢ ( 𝐼 ∈ V → ( ( 𝑥 ∈ 𝐼 ↦ ( ◡ 𝐵 ‘ ( 𝑦 ‘ 𝑥 ) ) ) ∈ X 𝑥 ∈ 𝐼 𝑆 ↔ ∀ 𝑥 ∈ 𝐼 ( ◡ 𝐵 ‘ ( 𝑦 ‘ 𝑥 ) ) ∈ 𝑆 ) ) | |
| 154 | 22 153 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ ( ◡ 𝐵 ‘ ( 𝑦 ‘ 𝑥 ) ) ) ∈ X 𝑥 ∈ 𝐼 𝑆 ↔ ∀ 𝑥 ∈ 𝐼 ( ◡ 𝐵 ‘ ( 𝑦 ‘ 𝑥 ) ) ∈ 𝑆 ) ) |
| 155 | 154 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ X 𝑥 ∈ 𝐼 𝐶 ) → ( ( 𝑥 ∈ 𝐼 ↦ ( ◡ 𝐵 ‘ ( 𝑦 ‘ 𝑥 ) ) ) ∈ X 𝑥 ∈ 𝐼 𝑆 ↔ ∀ 𝑥 ∈ 𝐼 ( ◡ 𝐵 ‘ ( 𝑦 ‘ 𝑥 ) ) ∈ 𝑆 ) ) |
| 156 | 152 155 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ X 𝑥 ∈ 𝐼 𝐶 ) → ( 𝑥 ∈ 𝐼 ↦ ( ◡ 𝐵 ‘ ( 𝑦 ‘ 𝑥 ) ) ) ∈ X 𝑥 ∈ 𝐼 𝑆 ) |
| 157 | 156 | ne0d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ X 𝑥 ∈ 𝐼 𝐶 ) → X 𝑥 ∈ 𝐼 𝑆 ≠ ∅ ) |
| 158 | 142 157 | exlimddv | ⊢ ( 𝜑 → X 𝑥 ∈ 𝐼 𝑆 ≠ ∅ ) |