This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of a pair is the union of its members. Proposition 5.7 of TakeutiZaring p. 16. (Contributed by NM, 25-Aug-2006) Avoid using unipr to prove it from uniprg . (Revised by BJ, 1-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uniprg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑦 ∈ V | |
| 2 | 1 | elpr | ⊢ ( 𝑦 ∈ { 𝐴 , 𝐵 } ↔ ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) ) |
| 3 | 2 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ { 𝐴 , 𝐵 } ) ↔ ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) ) ) |
| 4 | ancom | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) ) ↔ ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) ∧ 𝑥 ∈ 𝑦 ) ) | |
| 5 | andir | ⊢ ( ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) ∧ 𝑥 ∈ 𝑦 ) ↔ ( ( 𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∨ ( 𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦 ) ) ) | |
| 6 | 4 5 | bitri | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) ) ↔ ( ( 𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∨ ( 𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦 ) ) ) |
| 7 | 3 6 | bitri | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ { 𝐴 , 𝐵 } ) ↔ ( ( 𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∨ ( 𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦 ) ) ) |
| 8 | 7 | exbii | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ { 𝐴 , 𝐵 } ) ↔ ∃ 𝑦 ( ( 𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∨ ( 𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦 ) ) ) |
| 9 | 19.43 | ⊢ ( ∃ 𝑦 ( ( 𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∨ ( 𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦 ) ) ↔ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∨ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦 ) ) ) | |
| 10 | 8 9 | bitri | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ { 𝐴 , 𝐵 } ) ↔ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∨ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦 ) ) ) |
| 11 | clel3g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ 𝐴 ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦 ) ) ) | |
| 12 | 11 | bicomd | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦 ) ↔ 𝑥 ∈ 𝐴 ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦 ) ↔ 𝑥 ∈ 𝐴 ) ) |
| 14 | clel3g | ⊢ ( 𝐵 ∈ 𝑊 → ( 𝑥 ∈ 𝐵 ↔ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦 ) ) ) | |
| 15 | 14 | bicomd | ⊢ ( 𝐵 ∈ 𝑊 → ( ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦 ) ↔ 𝑥 ∈ 𝐵 ) ) |
| 16 | 15 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦 ) ↔ 𝑥 ∈ 𝐵 ) ) |
| 17 | 13 16 | orbi12d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∨ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) ) |
| 18 | 10 17 | bitrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ { 𝐴 , 𝐵 } ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) ) |
| 19 | 18 | abbidv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ { 𝐴 , 𝐵 } ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) } ) |
| 20 | df-uni | ⊢ ∪ { 𝐴 , 𝐵 } = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ { 𝐴 , 𝐵 } ) } | |
| 21 | df-un | ⊢ ( 𝐴 ∪ 𝐵 ) = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) } | |
| 22 | 19 20 21 | 3eqtr4g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) |