This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Approximate version of itg2le . If F <_ G for almost all x , then S.2 F <_ S.2 G . (Contributed by Mario Carneiro, 11-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2lea.1 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | |
| itg2lea.2 | ⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) | ||
| itg2lea.3 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | ||
| itg2lea.4 | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 ) | ||
| itg2lea.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) | ||
| Assertion | itg2lea | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ≤ ( ∫2 ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2lea.1 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | |
| 2 | itg2lea.2 | ⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) | |
| 3 | itg2lea.3 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 4 | itg2lea.4 | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 ) | |
| 5 | itg2lea.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) | |
| 6 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 7 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → 𝑓 ∈ dom ∫1 ) | |
| 8 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → 𝐴 ⊆ ℝ ) |
| 9 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → ( vol* ‘ 𝐴 ) = 0 ) |
| 10 | i1ff | ⊢ ( 𝑓 ∈ dom ∫1 → 𝑓 : ℝ ⟶ ℝ ) | |
| 11 | 10 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → 𝑓 : ℝ ⟶ ℝ ) |
| 12 | eldifi | ⊢ ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) → 𝑥 ∈ ℝ ) | |
| 13 | ffvelcdm | ⊢ ( ( 𝑓 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ ) | |
| 14 | 11 12 13 | syl2an | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ ) |
| 15 | 14 | rexrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ* ) |
| 16 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
| 17 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 18 | ffvelcdm | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) | |
| 19 | 17 12 18 | syl2an | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) |
| 20 | 16 19 | sselid | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
| 21 | ffvelcdm | ⊢ ( ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐺 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) | |
| 22 | 6 12 21 | syl2an | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) |
| 23 | 16 22 | sselid | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ* ) |
| 24 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → 𝑓 ∘r ≤ 𝐹 ) | |
| 25 | 11 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → 𝑓 Fn ℝ ) |
| 26 | 17 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → 𝐹 Fn ℝ ) |
| 27 | reex | ⊢ ℝ ∈ V | |
| 28 | 27 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → ℝ ∈ V ) |
| 29 | inidm | ⊢ ( ℝ ∩ ℝ ) = ℝ | |
| 30 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) | |
| 31 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 32 | 25 26 28 28 29 30 31 | ofrfval | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → ( 𝑓 ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ ℝ ( 𝑓 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 33 | 24 32 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → ∀ 𝑥 ∈ ℝ ( 𝑓 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 34 | 33 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑓 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 35 | 12 34 | sylan2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝑓 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 36 | 5 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 37 | 15 20 23 35 36 | xrletrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝑓 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 38 | 6 7 8 9 37 | itg2uba | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑓 ∘r ≤ 𝐹 ) ) → ( ∫1 ‘ 𝑓 ) ≤ ( ∫2 ‘ 𝐺 ) ) |
| 39 | 38 | expr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ dom ∫1 ) → ( 𝑓 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑓 ) ≤ ( ∫2 ‘ 𝐺 ) ) ) |
| 40 | 39 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑓 ) ≤ ( ∫2 ‘ 𝐺 ) ) ) |
| 41 | itg2cl | ⊢ ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐺 ) ∈ ℝ* ) | |
| 42 | 2 41 | syl | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) ∈ ℝ* ) |
| 43 | itg2leub | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ∫2 ‘ 𝐺 ) ∈ ℝ* ) → ( ( ∫2 ‘ 𝐹 ) ≤ ( ∫2 ‘ 𝐺 ) ↔ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑓 ) ≤ ( ∫2 ‘ 𝐺 ) ) ) ) | |
| 44 | 1 42 43 | syl2anc | ⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐹 ) ≤ ( ∫2 ‘ 𝐺 ) ↔ ∀ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 → ( ∫1 ‘ 𝑓 ) ≤ ( ∫2 ‘ 𝐺 ) ) ) ) |
| 45 | 40 44 | mpbird | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ≤ ( ∫2 ‘ 𝐺 ) ) |