This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero function has zero integral. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg10 | ⊢ ( ∫1 ‘ ( ℝ × { 0 } ) ) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1f0 | ⊢ ( ℝ × { 0 } ) ∈ dom ∫1 | |
| 2 | itg1val | ⊢ ( ( ℝ × { 0 } ) ∈ dom ∫1 → ( ∫1 ‘ ( ℝ × { 0 } ) ) = Σ 𝑥 ∈ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ ( ℝ × { 0 } ) “ { 𝑥 } ) ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( ∫1 ‘ ( ℝ × { 0 } ) ) = Σ 𝑥 ∈ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ ( ℝ × { 0 } ) “ { 𝑥 } ) ) ) |
| 4 | rnxpss | ⊢ ran ( ℝ × { 0 } ) ⊆ { 0 } | |
| 5 | ssdif0 | ⊢ ( ran ( ℝ × { 0 } ) ⊆ { 0 } ↔ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) = ∅ ) | |
| 6 | 4 5 | mpbi | ⊢ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) = ∅ |
| 7 | 6 | sumeq1i | ⊢ Σ 𝑥 ∈ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ ( ℝ × { 0 } ) “ { 𝑥 } ) ) ) = Σ 𝑥 ∈ ∅ ( 𝑥 · ( vol ‘ ( ◡ ( ℝ × { 0 } ) “ { 𝑥 } ) ) ) |
| 8 | sum0 | ⊢ Σ 𝑥 ∈ ∅ ( 𝑥 · ( vol ‘ ( ◡ ( ℝ × { 0 } ) “ { 𝑥 } ) ) ) = 0 | |
| 9 | 3 7 8 | 3eqtri | ⊢ ( ∫1 ‘ ( ℝ × { 0 } ) ) = 0 |