This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lemma to facilitate conversions from the function form to the class-variable form of a sum. (Contributed by Mario Carneiro, 12-Aug-2013) (Revised by Mario Carneiro, 23-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sumfc | ⊢ Σ 𝑗 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) = Σ 𝑘 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) | |
| 2 | 1 | fvmpt2i | ⊢ ( 𝑘 ∈ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) = ( I ‘ 𝐵 ) ) |
| 3 | 2 | sumeq2i | ⊢ Σ 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) = Σ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) |
| 4 | fveq2 | ⊢ ( 𝑗 = 𝑘 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) ) | |
| 5 | nffvmpt1 | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) | |
| 6 | nfcv | ⊢ Ⅎ 𝑗 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) | |
| 7 | 4 5 6 | cbvsum | ⊢ Σ 𝑗 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) = Σ 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) |
| 8 | sum2id | ⊢ Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ 𝐴 ( I ‘ 𝐵 ) | |
| 9 | 3 7 8 | 3eqtr4i | ⊢ Σ 𝑗 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) = Σ 𝑘 ∈ 𝐴 𝐵 |