This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a function given in maps-to notation. (Contributed by Mario Carneiro, 23-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmptg.1 | ⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) | |
| fvmptg.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) | ||
| Assertion | fvmpti | ⊢ ( 𝐴 ∈ 𝐷 → ( 𝐹 ‘ 𝐴 ) = ( I ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptg.1 | ⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) | |
| 2 | fvmptg.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) | |
| 3 | 1 2 | fvmptg | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ V ) → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) |
| 4 | fvi | ⊢ ( 𝐶 ∈ V → ( I ‘ 𝐶 ) = 𝐶 ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ V ) → ( I ‘ 𝐶 ) = 𝐶 ) |
| 6 | 3 5 | eqtr4d | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ V ) → ( 𝐹 ‘ 𝐴 ) = ( I ‘ 𝐶 ) ) |
| 7 | 1 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( 𝐵 ∈ V ↔ 𝐶 ∈ V ) ) |
| 8 | 2 | dmmpt | ⊢ dom 𝐹 = { 𝑥 ∈ 𝐷 ∣ 𝐵 ∈ V } |
| 9 | 7 8 | elrab2 | ⊢ ( 𝐴 ∈ dom 𝐹 ↔ ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ V ) ) |
| 10 | 9 | baib | ⊢ ( 𝐴 ∈ 𝐷 → ( 𝐴 ∈ dom 𝐹 ↔ 𝐶 ∈ V ) ) |
| 11 | 10 | notbid | ⊢ ( 𝐴 ∈ 𝐷 → ( ¬ 𝐴 ∈ dom 𝐹 ↔ ¬ 𝐶 ∈ V ) ) |
| 12 | ndmfv | ⊢ ( ¬ 𝐴 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐴 ) = ∅ ) | |
| 13 | 11 12 | biimtrrdi | ⊢ ( 𝐴 ∈ 𝐷 → ( ¬ 𝐶 ∈ V → ( 𝐹 ‘ 𝐴 ) = ∅ ) ) |
| 14 | 13 | imp | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ ¬ 𝐶 ∈ V ) → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
| 15 | fvprc | ⊢ ( ¬ 𝐶 ∈ V → ( I ‘ 𝐶 ) = ∅ ) | |
| 16 | 15 | adantl | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ ¬ 𝐶 ∈ V ) → ( I ‘ 𝐶 ) = ∅ ) |
| 17 | 14 16 | eqtr4d | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ ¬ 𝐶 ∈ V ) → ( 𝐹 ‘ 𝐴 ) = ( I ‘ 𝐶 ) ) |
| 18 | 6 17 | pm2.61dan | ⊢ ( 𝐴 ∈ 𝐷 → ( 𝐹 ‘ 𝐴 ) = ( I ‘ 𝐶 ) ) |