This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property " J is an R_0 space". A space is R_0 if any two topologically distinguishable points are separated (there is an open set containing each one and disjoint from the other). Or in contraposition, if every open set which contains x also contains y , so there is no separation, then x and y are members of the same open sets. We have chosen not to give this definition a name, because it turns out that a space is R_0 if and only if its Kolmogorov quotient is T_1, so that is what we prove here. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| Assertion | isr0 | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ( KQ ‘ 𝐽 ) ∈ Fre ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| 2 | 1 | kqid | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn ( KQ ‘ 𝐽 ) ) ) |
| 3 | 2 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 𝐹 ∈ ( 𝐽 Cn ( KQ ‘ 𝐽 ) ) ) |
| 4 | cnima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn ( KQ ‘ 𝐽 ) ) ∧ 𝑣 ∈ ( KQ ‘ 𝐽 ) ) → ( ◡ 𝐹 “ 𝑣 ) ∈ 𝐽 ) | |
| 5 | 3 4 | sylan | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑣 ∈ ( KQ ‘ 𝐽 ) ) → ( ◡ 𝐹 “ 𝑣 ) ∈ 𝐽 ) |
| 6 | eleq2 | ⊢ ( 𝑜 = ( ◡ 𝐹 “ 𝑣 ) → ( 𝑧 ∈ 𝑜 ↔ 𝑧 ∈ ( ◡ 𝐹 “ 𝑣 ) ) ) | |
| 7 | eleq2 | ⊢ ( 𝑜 = ( ◡ 𝐹 “ 𝑣 ) → ( 𝑤 ∈ 𝑜 ↔ 𝑤 ∈ ( ◡ 𝐹 “ 𝑣 ) ) ) | |
| 8 | 6 7 | imbi12d | ⊢ ( 𝑜 = ( ◡ 𝐹 “ 𝑣 ) → ( ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) ↔ ( 𝑧 ∈ ( ◡ 𝐹 “ 𝑣 ) → 𝑤 ∈ ( ◡ 𝐹 “ 𝑣 ) ) ) ) |
| 9 | 8 | rspcv | ⊢ ( ( ◡ 𝐹 “ 𝑣 ) ∈ 𝐽 → ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) → ( 𝑧 ∈ ( ◡ 𝐹 “ 𝑣 ) → 𝑤 ∈ ( ◡ 𝐹 “ 𝑣 ) ) ) ) |
| 10 | 5 9 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑣 ∈ ( KQ ‘ 𝐽 ) ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) → ( 𝑧 ∈ ( ◡ 𝐹 “ 𝑣 ) → 𝑤 ∈ ( ◡ 𝐹 “ 𝑣 ) ) ) ) |
| 11 | 1 | kqffn | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 Fn 𝑋 ) |
| 12 | 11 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 𝐹 Fn 𝑋 ) |
| 13 | 12 | adantr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑣 ∈ ( KQ ‘ 𝐽 ) ) → 𝐹 Fn 𝑋 ) |
| 14 | fnfun | ⊢ ( 𝐹 Fn 𝑋 → Fun 𝐹 ) | |
| 15 | 13 14 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑣 ∈ ( KQ ‘ 𝐽 ) ) → Fun 𝐹 ) |
| 16 | simprl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 𝑧 ∈ 𝑋 ) | |
| 17 | 16 | adantr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑣 ∈ ( KQ ‘ 𝐽 ) ) → 𝑧 ∈ 𝑋 ) |
| 18 | 13 | fndmd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑣 ∈ ( KQ ‘ 𝐽 ) ) → dom 𝐹 = 𝑋 ) |
| 19 | 17 18 | eleqtrrd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑣 ∈ ( KQ ‘ 𝐽 ) ) → 𝑧 ∈ dom 𝐹 ) |
| 20 | fvimacnv | ⊢ ( ( Fun 𝐹 ∧ 𝑧 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 ↔ 𝑧 ∈ ( ◡ 𝐹 “ 𝑣 ) ) ) | |
| 21 | 15 19 20 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑣 ∈ ( KQ ‘ 𝐽 ) ) → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 ↔ 𝑧 ∈ ( ◡ 𝐹 “ 𝑣 ) ) ) |
| 22 | simprr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 𝑤 ∈ 𝑋 ) | |
| 23 | 22 | adantr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑣 ∈ ( KQ ‘ 𝐽 ) ) → 𝑤 ∈ 𝑋 ) |
| 24 | 23 18 | eleqtrrd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑣 ∈ ( KQ ‘ 𝐽 ) ) → 𝑤 ∈ dom 𝐹 ) |
| 25 | fvimacnv | ⊢ ( ( Fun 𝐹 ∧ 𝑤 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ↔ 𝑤 ∈ ( ◡ 𝐹 “ 𝑣 ) ) ) | |
| 26 | 15 24 25 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑣 ∈ ( KQ ‘ 𝐽 ) ) → ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ↔ 𝑤 ∈ ( ◡ 𝐹 “ 𝑣 ) ) ) |
| 27 | 21 26 | imbi12d | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑣 ∈ ( KQ ‘ 𝐽 ) ) → ( ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) ↔ ( 𝑧 ∈ ( ◡ 𝐹 “ 𝑣 ) → 𝑤 ∈ ( ◡ 𝐹 “ 𝑣 ) ) ) ) |
| 28 | 10 27 | sylibrd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑣 ∈ ( KQ ‘ 𝐽 ) ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) ) ) |
| 29 | 28 | ralrimdva | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) → ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) ) ) |
| 30 | simplr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( KQ ‘ 𝐽 ) ∈ Fre ) | |
| 31 | fnfvelrn | ⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ∈ ran 𝐹 ) | |
| 32 | 12 16 31 | syl2anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ran 𝐹 ) |
| 33 | 1 | kqtopon | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) ) |
| 34 | 33 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) ) |
| 35 | toponuni | ⊢ ( ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) → ran 𝐹 = ∪ ( KQ ‘ 𝐽 ) ) | |
| 36 | 34 35 | syl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ran 𝐹 = ∪ ( KQ ‘ 𝐽 ) ) |
| 37 | 32 36 | eleqtrd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ∪ ( KQ ‘ 𝐽 ) ) |
| 38 | fnfvelrn | ⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑤 ) ∈ ran 𝐹 ) | |
| 39 | 12 22 38 | syl2anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ ran 𝐹 ) |
| 40 | 39 36 | eleqtrd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ ∪ ( KQ ‘ 𝐽 ) ) |
| 41 | eqid | ⊢ ∪ ( KQ ‘ 𝐽 ) = ∪ ( KQ ‘ 𝐽 ) | |
| 42 | 41 | t1sep2 | ⊢ ( ( ( KQ ‘ 𝐽 ) ∈ Fre ∧ ( 𝐹 ‘ 𝑧 ) ∈ ∪ ( KQ ‘ 𝐽 ) ∧ ( 𝐹 ‘ 𝑤 ) ∈ ∪ ( KQ ‘ 𝐽 ) ) → ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 43 | 30 37 40 42 | syl3anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 44 | 29 43 | syld | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 45 | 1 | kqfeq | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ ∀ 𝑦 ∈ 𝐽 ( 𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦 ) ) ) |
| 46 | eleq2 | ⊢ ( 𝑜 = 𝑦 → ( 𝑧 ∈ 𝑜 ↔ 𝑧 ∈ 𝑦 ) ) | |
| 47 | eleq2 | ⊢ ( 𝑜 = 𝑦 → ( 𝑤 ∈ 𝑜 ↔ 𝑤 ∈ 𝑦 ) ) | |
| 48 | 46 47 | bibi12d | ⊢ ( 𝑜 = 𝑦 → ( ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ↔ ( 𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦 ) ) ) |
| 49 | 48 | cbvralvw | ⊢ ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ↔ ∀ 𝑦 ∈ 𝐽 ( 𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦 ) ) |
| 50 | 45 49 | bitr4di | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ) ) |
| 51 | 50 | 3expb | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ) ) |
| 52 | 51 | adantlr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ) ) |
| 53 | 44 52 | sylibd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ) ) |
| 54 | 53 | ralrimivva | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) → ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ) ) |
| 55 | 54 | ex | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ( KQ ‘ 𝐽 ) ∈ Fre → ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ) ) ) |
| 56 | 1 | kqopn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → ( 𝐹 “ 𝑜 ) ∈ ( KQ ‘ 𝐽 ) ) |
| 57 | 56 | ad4ant14 | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → ( 𝐹 “ 𝑜 ) ∈ ( KQ ‘ 𝐽 ) ) |
| 58 | eleq2 | ⊢ ( 𝑣 = ( 𝐹 “ 𝑜 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑜 ) ) ) | |
| 59 | eleq2 | ⊢ ( 𝑣 = ( 𝐹 “ 𝑜 ) → ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ↔ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑜 ) ) ) | |
| 60 | 58 59 | imbi12d | ⊢ ( 𝑣 = ( 𝐹 “ 𝑜 ) → ( ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑜 ) → ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑜 ) ) ) ) |
| 61 | 60 | rspcv | ⊢ ( ( 𝐹 “ 𝑜 ) ∈ ( KQ ‘ 𝐽 ) → ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑜 ) → ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑜 ) ) ) ) |
| 62 | 57 61 | syl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑜 ) → ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑜 ) ) ) ) |
| 63 | 1 | kqfvima | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑜 ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑜 ) ) ) |
| 64 | 63 | 3expa | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑜 ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑜 ) ) ) |
| 65 | 64 | an32s | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → ( 𝑧 ∈ 𝑜 ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑜 ) ) ) |
| 66 | 65 | adantlr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → ( 𝑧 ∈ 𝑜 ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑜 ) ) ) |
| 67 | 1 | kqfvima | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑤 ∈ 𝑜 ↔ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑜 ) ) ) |
| 68 | 67 | 3expa | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝑤 ∈ 𝑜 ↔ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑜 ) ) ) |
| 69 | 68 | an32s | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → ( 𝑤 ∈ 𝑜 ↔ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑜 ) ) ) |
| 70 | 69 | adantllr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → ( 𝑤 ∈ 𝑜 ↔ ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑜 ) ) ) |
| 71 | 66 70 | imbi12d | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → ( ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ 𝑜 ) → ( 𝐹 ‘ 𝑤 ) ∈ ( 𝐹 “ 𝑜 ) ) ) ) |
| 72 | 62 71 | sylibrd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) → ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) ) ) |
| 73 | 72 | ralrimdva | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) → ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) → ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) ) ) |
| 74 | 1 | kqfval | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) = { 𝑦 ∈ 𝐽 ∣ 𝑧 ∈ 𝑦 } ) |
| 75 | 74 | adantr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) = { 𝑦 ∈ 𝐽 ∣ 𝑧 ∈ 𝑦 } ) |
| 76 | 1 | kqfval | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑤 ) = { 𝑦 ∈ 𝐽 ∣ 𝑤 ∈ 𝑦 } ) |
| 77 | 76 | adantlr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑤 ) = { 𝑦 ∈ 𝐽 ∣ 𝑤 ∈ 𝑦 } ) |
| 78 | 75 77 | eqeq12d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ { 𝑦 ∈ 𝐽 ∣ 𝑧 ∈ 𝑦 } = { 𝑦 ∈ 𝐽 ∣ 𝑤 ∈ 𝑦 } ) ) |
| 79 | rabbi | ⊢ ( ∀ 𝑦 ∈ 𝐽 ( 𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦 ) ↔ { 𝑦 ∈ 𝐽 ∣ 𝑧 ∈ 𝑦 } = { 𝑦 ∈ 𝐽 ∣ 𝑤 ∈ 𝑦 } ) | |
| 80 | 49 79 | bitri | ⊢ ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ↔ { 𝑦 ∈ 𝐽 ∣ 𝑧 ∈ 𝑦 } = { 𝑦 ∈ 𝐽 ∣ 𝑤 ∈ 𝑦 } ) |
| 81 | 78 80 | bitr4di | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ) ) |
| 82 | 81 | biimprd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 83 | 73 82 | imim12d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) → ( ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ) → ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 84 | 83 | ralimdva | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) → ( ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ) → ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 85 | 84 | ralimdva | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ) → ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 86 | eleq1 | ⊢ ( 𝑎 = ( 𝐹 ‘ 𝑧 ) → ( 𝑎 ∈ 𝑣 ↔ ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 ) ) | |
| 87 | 86 | imbi1d | ⊢ ( 𝑎 = ( 𝐹 ‘ 𝑧 ) → ( ( 𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → 𝑏 ∈ 𝑣 ) ) ) |
| 88 | 87 | ralbidv | ⊢ ( 𝑎 = ( 𝐹 ‘ 𝑧 ) → ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( 𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣 ) ↔ ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → 𝑏 ∈ 𝑣 ) ) ) |
| 89 | eqeq1 | ⊢ ( 𝑎 = ( 𝐹 ‘ 𝑧 ) → ( 𝑎 = 𝑏 ↔ ( 𝐹 ‘ 𝑧 ) = 𝑏 ) ) | |
| 90 | 88 89 | imbi12d | ⊢ ( 𝑎 = ( 𝐹 ‘ 𝑧 ) → ( ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( 𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣 ) → 𝑎 = 𝑏 ) ↔ ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → 𝑏 ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = 𝑏 ) ) ) |
| 91 | 90 | ralbidv | ⊢ ( 𝑎 = ( 𝐹 ‘ 𝑧 ) → ( ∀ 𝑏 ∈ ran 𝐹 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( 𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣 ) → 𝑎 = 𝑏 ) ↔ ∀ 𝑏 ∈ ran 𝐹 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → 𝑏 ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = 𝑏 ) ) ) |
| 92 | 91 | ralrn | ⊢ ( 𝐹 Fn 𝑋 → ( ∀ 𝑎 ∈ ran 𝐹 ∀ 𝑏 ∈ ran 𝐹 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( 𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣 ) → 𝑎 = 𝑏 ) ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑏 ∈ ran 𝐹 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → 𝑏 ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = 𝑏 ) ) ) |
| 93 | eleq1 | ⊢ ( 𝑏 = ( 𝐹 ‘ 𝑤 ) → ( 𝑏 ∈ 𝑣 ↔ ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) ) | |
| 94 | 93 | imbi2d | ⊢ ( 𝑏 = ( 𝐹 ‘ 𝑤 ) → ( ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → 𝑏 ∈ 𝑣 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) ) ) |
| 95 | 94 | ralbidv | ⊢ ( 𝑏 = ( 𝐹 ‘ 𝑤 ) → ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → 𝑏 ∈ 𝑣 ) ↔ ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) ) ) |
| 96 | eqeq2 | ⊢ ( 𝑏 = ( 𝐹 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) = 𝑏 ↔ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) | |
| 97 | 95 96 | imbi12d | ⊢ ( 𝑏 = ( 𝐹 ‘ 𝑤 ) → ( ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → 𝑏 ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = 𝑏 ) ↔ ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 98 | 97 | ralrn | ⊢ ( 𝐹 Fn 𝑋 → ( ∀ 𝑏 ∈ ran 𝐹 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → 𝑏 ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = 𝑏 ) ↔ ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 99 | 98 | ralbidv | ⊢ ( 𝐹 Fn 𝑋 → ( ∀ 𝑧 ∈ 𝑋 ∀ 𝑏 ∈ ran 𝐹 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → 𝑏 ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = 𝑏 ) ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 100 | 92 99 | bitrd | ⊢ ( 𝐹 Fn 𝑋 → ( ∀ 𝑎 ∈ ran 𝐹 ∀ 𝑏 ∈ ran 𝐹 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( 𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣 ) → 𝑎 = 𝑏 ) ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 101 | 11 100 | syl | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ∀ 𝑎 ∈ ran 𝐹 ∀ 𝑏 ∈ ran 𝐹 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( 𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣 ) → 𝑎 = 𝑏 ) ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑣 → ( 𝐹 ‘ 𝑤 ) ∈ 𝑣 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 102 | 85 101 | sylibrd | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ) → ∀ 𝑎 ∈ ran 𝐹 ∀ 𝑏 ∈ ran 𝐹 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( 𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣 ) → 𝑎 = 𝑏 ) ) ) |
| 103 | ist1-2 | ⊢ ( ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) → ( ( KQ ‘ 𝐽 ) ∈ Fre ↔ ∀ 𝑎 ∈ ran 𝐹 ∀ 𝑏 ∈ ran 𝐹 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( 𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣 ) → 𝑎 = 𝑏 ) ) ) | |
| 104 | 33 103 | syl | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ( KQ ‘ 𝐽 ) ∈ Fre ↔ ∀ 𝑎 ∈ ran 𝐹 ∀ 𝑏 ∈ ran 𝐹 ( ∀ 𝑣 ∈ ( KQ ‘ 𝐽 ) ( 𝑎 ∈ 𝑣 → 𝑏 ∈ 𝑣 ) → 𝑎 = 𝑏 ) ) ) |
| 105 | 102 104 | sylibrd | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ) → ( KQ ‘ 𝐽 ) ∈ Fre ) ) |
| 106 | 55 105 | impbid | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ( KQ ‘ 𝐽 ) ∈ Fre ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 → 𝑤 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝑤 ∈ 𝑜 ) ) ) ) |