This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: When the image set is open, the quotient map satisfies a partial converse to fnfvima , which is normally only true for injective functions. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| Assertion | kqfvima | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∈ 𝑈 ↔ ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| 2 | 1 | kqffn | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 Fn 𝑋 ) |
| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) → 𝐹 Fn 𝑋 ) |
| 4 | toponss | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → 𝑈 ⊆ 𝑋 ) | |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) → 𝑈 ⊆ 𝑋 ) |
| 6 | fnfvima | ⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑈 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑈 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 “ 𝑈 ) ) | |
| 7 | 6 | 3expia | ⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑈 ⊆ 𝑋 ) → ( 𝐴 ∈ 𝑈 → ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
| 8 | 3 5 7 | syl2anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∈ 𝑈 → ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
| 9 | fnfun | ⊢ ( 𝐹 Fn 𝑋 → Fun 𝐹 ) | |
| 10 | fvelima | ⊢ ( ( Fun 𝐹 ∧ ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 “ 𝑈 ) ) → ∃ 𝑧 ∈ 𝑈 ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 11 | 10 | ex | ⊢ ( Fun 𝐹 → ( ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 “ 𝑈 ) → ∃ 𝑧 ∈ 𝑈 ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) ) ) |
| 12 | 3 9 11 | 3syl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 “ 𝑈 ) → ∃ 𝑧 ∈ 𝑈 ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) ) ) |
| 13 | simpl1 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑈 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 14 | 5 | sselda | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑈 ) → 𝑧 ∈ 𝑋 ) |
| 15 | simpl3 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑈 ) → 𝐴 ∈ 𝑋 ) | |
| 16 | 1 | kqfeq | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) ↔ ∀ 𝑦 ∈ 𝐽 ( 𝑧 ∈ 𝑦 ↔ 𝐴 ∈ 𝑦 ) ) ) |
| 17 | 13 14 15 16 | syl3anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑈 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) ↔ ∀ 𝑦 ∈ 𝐽 ( 𝑧 ∈ 𝑦 ↔ 𝐴 ∈ 𝑦 ) ) ) |
| 18 | eleq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑤 ) ) | |
| 19 | eleq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑤 ) ) | |
| 20 | 18 19 | bibi12d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑧 ∈ 𝑦 ↔ 𝐴 ∈ 𝑦 ) ↔ ( 𝑧 ∈ 𝑤 ↔ 𝐴 ∈ 𝑤 ) ) ) |
| 21 | 20 | cbvralvw | ⊢ ( ∀ 𝑦 ∈ 𝐽 ( 𝑧 ∈ 𝑦 ↔ 𝐴 ∈ 𝑦 ) ↔ ∀ 𝑤 ∈ 𝐽 ( 𝑧 ∈ 𝑤 ↔ 𝐴 ∈ 𝑤 ) ) |
| 22 | 17 21 | bitrdi | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑈 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) ↔ ∀ 𝑤 ∈ 𝐽 ( 𝑧 ∈ 𝑤 ↔ 𝐴 ∈ 𝑤 ) ) ) |
| 23 | simpl2 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑈 ) → 𝑈 ∈ 𝐽 ) | |
| 24 | eleq2 | ⊢ ( 𝑤 = 𝑈 → ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑈 ) ) | |
| 25 | eleq2 | ⊢ ( 𝑤 = 𝑈 → ( 𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑈 ) ) | |
| 26 | 24 25 | bibi12d | ⊢ ( 𝑤 = 𝑈 → ( ( 𝑧 ∈ 𝑤 ↔ 𝐴 ∈ 𝑤 ) ↔ ( 𝑧 ∈ 𝑈 ↔ 𝐴 ∈ 𝑈 ) ) ) |
| 27 | 26 | rspcv | ⊢ ( 𝑈 ∈ 𝐽 → ( ∀ 𝑤 ∈ 𝐽 ( 𝑧 ∈ 𝑤 ↔ 𝐴 ∈ 𝑤 ) → ( 𝑧 ∈ 𝑈 ↔ 𝐴 ∈ 𝑈 ) ) ) |
| 28 | 23 27 | syl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑈 ) → ( ∀ 𝑤 ∈ 𝐽 ( 𝑧 ∈ 𝑤 ↔ 𝐴 ∈ 𝑤 ) → ( 𝑧 ∈ 𝑈 ↔ 𝐴 ∈ 𝑈 ) ) ) |
| 29 | 22 28 | sylbid | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑈 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) → ( 𝑧 ∈ 𝑈 ↔ 𝐴 ∈ 𝑈 ) ) ) |
| 30 | simpr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑈 ) → 𝑧 ∈ 𝑈 ) | |
| 31 | biimp | ⊢ ( ( 𝑧 ∈ 𝑈 ↔ 𝐴 ∈ 𝑈 ) → ( 𝑧 ∈ 𝑈 → 𝐴 ∈ 𝑈 ) ) | |
| 32 | 29 30 31 | syl6ci | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑈 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) → 𝐴 ∈ 𝑈 ) ) |
| 33 | 32 | rexlimdva | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) → ( ∃ 𝑧 ∈ 𝑈 ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) → 𝐴 ∈ 𝑈 ) ) |
| 34 | 12 33 | syld | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 “ 𝑈 ) → 𝐴 ∈ 𝑈 ) ) |
| 35 | 8 34 | impbid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∈ 𝑈 ↔ ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |