This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any two points in a T_1 space which have no separation are equal. (Contributed by Jeff Hankins, 1-Feb-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | t1sep.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | t1sep2 | ⊢ ( ( 𝐽 ∈ Fre ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜 ) → 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | t1sep.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | t1top | ⊢ ( 𝐽 ∈ Fre → 𝐽 ∈ Top ) | |
| 3 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 4 | 2 3 | sylib | ⊢ ( 𝐽 ∈ Fre → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 5 | ist1-2 | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Fre ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐽 ∈ Fre → ( 𝐽 ∈ Fre ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) ) |
| 7 | 6 | ibi | ⊢ ( 𝐽 ∈ Fre → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ) |
| 8 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝑜 ↔ 𝐴 ∈ 𝑜 ) ) | |
| 9 | 8 | imbi1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ↔ ( 𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ) ) |
| 10 | 9 | ralbidv | ⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ) ) |
| 11 | eqeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝑦 ↔ 𝐴 = 𝑦 ) ) | |
| 12 | 10 11 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) ↔ ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝐴 = 𝑦 ) ) ) |
| 13 | eleq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜 ) ) | |
| 14 | 13 | imbi2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ↔ ( 𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜 ) ) ) |
| 15 | 14 | ralbidv | ⊢ ( 𝑦 = 𝐵 → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜 ) ) ) |
| 16 | eqeq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 = 𝑦 ↔ 𝐴 = 𝐵 ) ) | |
| 17 | 15 16 | imbi12d | ⊢ ( 𝑦 = 𝐵 → ( ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝐴 = 𝑦 ) ↔ ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜 ) → 𝐴 = 𝐵 ) ) ) |
| 18 | 12 17 | rspc2v | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → 𝑥 = 𝑦 ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜 ) → 𝐴 = 𝐵 ) ) ) |
| 19 | 7 18 | mpan9 | ⊢ ( ( 𝐽 ∈ Fre ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜 ) → 𝐴 = 𝐵 ) ) |
| 20 | 19 | 3impb | ⊢ ( ( 𝐽 ∈ Fre ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜 ) → 𝐴 = 𝐵 ) ) |