This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbii . (Contributed by NM, 25-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabbi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝜒 ) ↔ { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐴 ∣ 𝜒 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbib | ⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) } ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) | |
| 2 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } | |
| 3 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜒 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) } | |
| 4 | 2 3 | eqeq12i | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐴 ∣ 𝜒 } ↔ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) } ) |
| 5 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝜒 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ) | |
| 6 | pm5.32 | ⊢ ( ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) | |
| 7 | 6 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 8 | 5 7 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝜒 ) ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 9 | 1 4 8 | 3bitr4ri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 ↔ 𝜒 ) ↔ { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐴 ∣ 𝜒 } ) |