This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two points in the Kolmogorov quotient are equal iff the original points are topologically indistinguishable. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| Assertion | kqfeq | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ↔ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 ↔ 𝐵 ∈ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| 2 | 1 | kqfval | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) = { 𝑦 ∈ 𝐽 ∣ 𝐴 ∈ 𝑦 } ) |
| 3 | 2 | 3adant3 | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) = { 𝑦 ∈ 𝐽 ∣ 𝐴 ∈ 𝑦 } ) |
| 4 | 1 | kqfval | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐵 ) = { 𝑦 ∈ 𝐽 ∣ 𝐵 ∈ 𝑦 } ) |
| 5 | 4 | 3adant2 | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐵 ) = { 𝑦 ∈ 𝐽 ∣ 𝐵 ∈ 𝑦 } ) |
| 6 | 3 5 | eqeq12d | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ↔ { 𝑦 ∈ 𝐽 ∣ 𝐴 ∈ 𝑦 } = { 𝑦 ∈ 𝐽 ∣ 𝐵 ∈ 𝑦 } ) ) |
| 7 | rabbi | ⊢ ( ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 ↔ 𝐵 ∈ 𝑦 ) ↔ { 𝑦 ∈ 𝐽 ∣ 𝐴 ∈ 𝑦 } = { 𝑦 ∈ 𝐽 ∣ 𝐵 ∈ 𝑦 } ) | |
| 8 | 6 7 | bitr4di | ⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ↔ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 ↔ 𝐵 ∈ 𝑦 ) ) ) |