This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The analogue of the T_1 axiom (singletons are closed) for an R_0 space. In an R_0 space the set of all points topologically indistinguishable from A is closed. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| Assertion | r0cld | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ∧ 𝐴 ∈ 𝑋 ) → { 𝑧 ∈ 𝑋 ∣ ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝐴 ∈ 𝑜 ) } ∈ ( Clsd ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| 2 | 1 | kqffn | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 Fn 𝑋 ) |
| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ∧ 𝐴 ∈ 𝑋 ) → 𝐹 Fn 𝑋 ) |
| 4 | fncnvima2 | ⊢ ( 𝐹 Fn 𝑋 → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) = { 𝑧 ∈ 𝑋 ∣ ( 𝐹 ‘ 𝑧 ) ∈ { ( 𝐹 ‘ 𝐴 ) } } ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ∧ 𝐴 ∈ 𝑋 ) → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) = { 𝑧 ∈ 𝑋 ∣ ( 𝐹 ‘ 𝑧 ) ∈ { ( 𝐹 ‘ 𝐴 ) } } ) |
| 6 | fvex | ⊢ ( 𝐹 ‘ 𝑧 ) ∈ V | |
| 7 | 6 | elsn | ⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ { ( 𝐹 ‘ 𝐴 ) } ↔ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 8 | simpl1 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 9 | simpr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) → 𝑧 ∈ 𝑋 ) | |
| 10 | simpl3 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 11 | 1 | kqfeq | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) ↔ ∀ 𝑦 ∈ 𝐽 ( 𝑧 ∈ 𝑦 ↔ 𝐴 ∈ 𝑦 ) ) ) |
| 12 | eleq2w | ⊢ ( 𝑦 = 𝑜 → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑜 ) ) | |
| 13 | eleq2w | ⊢ ( 𝑦 = 𝑜 → ( 𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑜 ) ) | |
| 14 | 12 13 | bibi12d | ⊢ ( 𝑦 = 𝑜 → ( ( 𝑧 ∈ 𝑦 ↔ 𝐴 ∈ 𝑦 ) ↔ ( 𝑧 ∈ 𝑜 ↔ 𝐴 ∈ 𝑜 ) ) ) |
| 15 | 14 | cbvralvw | ⊢ ( ∀ 𝑦 ∈ 𝐽 ( 𝑧 ∈ 𝑦 ↔ 𝐴 ∈ 𝑦 ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝐴 ∈ 𝑜 ) ) |
| 16 | 11 15 | bitrdi | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝐴 ∈ 𝑜 ) ) ) |
| 17 | 8 9 10 16 | syl3anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝐴 ∈ 𝑜 ) ) ) |
| 18 | 7 17 | bitrid | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ { ( 𝐹 ‘ 𝐴 ) } ↔ ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝐴 ∈ 𝑜 ) ) ) |
| 19 | 18 | rabbidva | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ∧ 𝐴 ∈ 𝑋 ) → { 𝑧 ∈ 𝑋 ∣ ( 𝐹 ‘ 𝑧 ) ∈ { ( 𝐹 ‘ 𝐴 ) } } = { 𝑧 ∈ 𝑋 ∣ ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝐴 ∈ 𝑜 ) } ) |
| 20 | 5 19 | eqtrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ∧ 𝐴 ∈ 𝑋 ) → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) = { 𝑧 ∈ 𝑋 ∣ ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝐴 ∈ 𝑜 ) } ) |
| 21 | 1 | kqid | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn ( KQ ‘ 𝐽 ) ) ) |
| 22 | 21 | 3ad2ant1 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ∧ 𝐴 ∈ 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn ( KQ ‘ 𝐽 ) ) ) |
| 23 | simp2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ∧ 𝐴 ∈ 𝑋 ) → ( KQ ‘ 𝐽 ) ∈ Fre ) | |
| 24 | simp3 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 25 | fnfvelrn | ⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐹 ) | |
| 26 | 3 24 25 | syl2anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐹 ) |
| 27 | 1 | kqtopon | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) ) |
| 28 | 27 | 3ad2ant1 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ∧ 𝐴 ∈ 𝑋 ) → ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) ) |
| 29 | toponuni | ⊢ ( ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) → ran 𝐹 = ∪ ( KQ ‘ 𝐽 ) ) | |
| 30 | 28 29 | syl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ∧ 𝐴 ∈ 𝑋 ) → ran 𝐹 = ∪ ( KQ ‘ 𝐽 ) ) |
| 31 | 26 30 | eleqtrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) ∈ ∪ ( KQ ‘ 𝐽 ) ) |
| 32 | eqid | ⊢ ∪ ( KQ ‘ 𝐽 ) = ∪ ( KQ ‘ 𝐽 ) | |
| 33 | 32 | t1sncld | ⊢ ( ( ( KQ ‘ 𝐽 ) ∈ Fre ∧ ( 𝐹 ‘ 𝐴 ) ∈ ∪ ( KQ ‘ 𝐽 ) ) → { ( 𝐹 ‘ 𝐴 ) } ∈ ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ) |
| 34 | 23 31 33 | syl2anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ∧ 𝐴 ∈ 𝑋 ) → { ( 𝐹 ‘ 𝐴 ) } ∈ ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ) |
| 35 | cnclima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn ( KQ ‘ 𝐽 ) ) ∧ { ( 𝐹 ‘ 𝐴 ) } ∈ ( Clsd ‘ ( KQ ‘ 𝐽 ) ) ) → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ∈ ( Clsd ‘ 𝐽 ) ) | |
| 36 | 22 34 35 | syl2anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ∧ 𝐴 ∈ 𝑋 ) → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝐴 ) } ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 37 | 20 36 | eqeltrrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ∧ 𝐴 ∈ 𝑋 ) → { 𝑧 ∈ 𝑋 ∣ ∀ 𝑜 ∈ 𝐽 ( 𝑧 ∈ 𝑜 ↔ 𝐴 ∈ 𝑜 ) } ∈ ( Clsd ‘ 𝐽 ) ) |