This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for iscmet3 . (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iscmet3.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| Assertion | iscmet3lem3 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscmet3.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | simpl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) → 𝑀 ∈ ℤ ) | |
| 3 | simpr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) → 𝑅 ∈ ℝ+ ) | |
| 4 | eluzelz | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℤ ) | |
| 5 | 4 1 | eleq2s | ⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ ) |
| 6 | 5 | adantl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ ℤ ) |
| 7 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( ( 1 / 2 ) ↑ 𝑛 ) = ( ( 1 / 2 ) ↑ 𝑘 ) ) | |
| 8 | eqid | ⊢ ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) = ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) | |
| 9 | ovex | ⊢ ( ( 1 / 2 ) ↑ 𝑘 ) ∈ V | |
| 10 | 7 8 9 | fvmpt | ⊢ ( 𝑘 ∈ ℤ → ( ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( 1 / 2 ) ↑ 𝑘 ) ) |
| 11 | 6 10 | syl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( 1 / 2 ) ↑ 𝑘 ) ) |
| 12 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 13 | 12 | reseq2i | ⊢ ( ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ↾ ℕ0 ) = ( ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ↾ ( ℤ≥ ‘ 0 ) ) |
| 14 | nn0ssz | ⊢ ℕ0 ⊆ ℤ | |
| 15 | resmpt | ⊢ ( ℕ0 ⊆ ℤ → ( ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ↾ ℕ0 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) | |
| 16 | 14 15 | ax-mp | ⊢ ( ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ↾ ℕ0 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) |
| 17 | 13 16 | eqtr3i | ⊢ ( ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ↾ ( ℤ≥ ‘ 0 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) |
| 18 | halfcn | ⊢ ( 1 / 2 ) ∈ ℂ | |
| 19 | 18 | a1i | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) → ( 1 / 2 ) ∈ ℂ ) |
| 20 | halfre | ⊢ ( 1 / 2 ) ∈ ℝ | |
| 21 | halfge0 | ⊢ 0 ≤ ( 1 / 2 ) | |
| 22 | absid | ⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ 0 ≤ ( 1 / 2 ) ) → ( abs ‘ ( 1 / 2 ) ) = ( 1 / 2 ) ) | |
| 23 | 20 21 22 | mp2an | ⊢ ( abs ‘ ( 1 / 2 ) ) = ( 1 / 2 ) |
| 24 | halflt1 | ⊢ ( 1 / 2 ) < 1 | |
| 25 | 23 24 | eqbrtri | ⊢ ( abs ‘ ( 1 / 2 ) ) < 1 |
| 26 | 25 | a1i | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) → ( abs ‘ ( 1 / 2 ) ) < 1 ) |
| 27 | 19 26 | expcnv | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) → ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ⇝ 0 ) |
| 28 | 17 27 | eqbrtrid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) → ( ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ↾ ( ℤ≥ ‘ 0 ) ) ⇝ 0 ) |
| 29 | 0z | ⊢ 0 ∈ ℤ | |
| 30 | zex | ⊢ ℤ ∈ V | |
| 31 | 30 | mptex | ⊢ ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ∈ V |
| 32 | 31 | a1i | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) → ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ∈ V ) |
| 33 | climres | ⊢ ( ( 0 ∈ ℤ ∧ ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ∈ V ) → ( ( ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ↾ ( ℤ≥ ‘ 0 ) ) ⇝ 0 ↔ ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ⇝ 0 ) ) | |
| 34 | 29 32 33 | sylancr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) → ( ( ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ↾ ( ℤ≥ ‘ 0 ) ) ⇝ 0 ↔ ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ⇝ 0 ) ) |
| 35 | 28 34 | mpbid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) → ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ⇝ 0 ) |
| 36 | 1 2 3 11 35 | climi0 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 1 / 2 ) ↑ 𝑘 ) ) < 𝑅 ) |
| 37 | 1 | uztrn2 | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 38 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 39 | rphalfcl | ⊢ ( 1 ∈ ℝ+ → ( 1 / 2 ) ∈ ℝ+ ) | |
| 40 | 38 39 | ax-mp | ⊢ ( 1 / 2 ) ∈ ℝ+ |
| 41 | rpexpcl | ⊢ ( ( ( 1 / 2 ) ∈ ℝ+ ∧ 𝑘 ∈ ℤ ) → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ+ ) | |
| 42 | 40 6 41 | sylancr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ+ ) |
| 43 | rpre | ⊢ ( ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ+ → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ ) | |
| 44 | rpge0 | ⊢ ( ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ+ → 0 ≤ ( ( 1 / 2 ) ↑ 𝑘 ) ) | |
| 45 | 43 44 | absidd | ⊢ ( ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ+ → ( abs ‘ ( ( 1 / 2 ) ↑ 𝑘 ) ) = ( ( 1 / 2 ) ↑ 𝑘 ) ) |
| 46 | 42 45 | syl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( ( 1 / 2 ) ↑ 𝑘 ) ) = ( ( 1 / 2 ) ↑ 𝑘 ) ) |
| 47 | 46 | breq1d | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( abs ‘ ( ( 1 / 2 ) ↑ 𝑘 ) ) < 𝑅 ↔ ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑅 ) ) |
| 48 | 37 47 | sylan2 | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( abs ‘ ( ( 1 / 2 ) ↑ 𝑘 ) ) < 𝑅 ↔ ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑅 ) ) |
| 49 | 48 | anassrs | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( ( 1 / 2 ) ↑ 𝑘 ) ) < 𝑅 ↔ ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑅 ) ) |
| 50 | 49 | ralbidva | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 1 / 2 ) ↑ 𝑘 ) ) < 𝑅 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑅 ) ) |
| 51 | 50 | rexbidva | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 1 / 2 ) ↑ 𝑘 ) ) < 𝑅 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑅 ) ) |
| 52 | 36 51 | mpbid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑅 ) |