This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for iscmet3 . (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscmet3.1 | |- Z = ( ZZ>= ` M ) |
|
| iscmet3.2 | |- J = ( MetOpen ` D ) |
||
| iscmet3.3 | |- ( ph -> M e. ZZ ) |
||
| iscmet3.4 | |- ( ph -> D e. ( Met ` X ) ) |
||
| iscmet3.6 | |- ( ph -> F : Z --> X ) |
||
| iscmet3.9 | |- ( ph -> A. k e. ZZ A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) |
||
| iscmet3.10 | |- ( ph -> A. k e. Z A. n e. ( M ... k ) ( F ` k ) e. ( S ` n ) ) |
||
| iscmet3.7 | |- ( ph -> G e. ( Fil ` X ) ) |
||
| iscmet3.8 | |- ( ph -> S : ZZ --> G ) |
||
| iscmet3.5 | |- ( ph -> F e. dom ( ~~>t ` J ) ) |
||
| Assertion | iscmet3lem2 | |- ( ph -> ( J fLim G ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscmet3.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | iscmet3.2 | |- J = ( MetOpen ` D ) |
|
| 3 | iscmet3.3 | |- ( ph -> M e. ZZ ) |
|
| 4 | iscmet3.4 | |- ( ph -> D e. ( Met ` X ) ) |
|
| 5 | iscmet3.6 | |- ( ph -> F : Z --> X ) |
|
| 6 | iscmet3.9 | |- ( ph -> A. k e. ZZ A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) |
|
| 7 | iscmet3.10 | |- ( ph -> A. k e. Z A. n e. ( M ... k ) ( F ` k ) e. ( S ` n ) ) |
|
| 8 | iscmet3.7 | |- ( ph -> G e. ( Fil ` X ) ) |
|
| 9 | iscmet3.8 | |- ( ph -> S : ZZ --> G ) |
|
| 10 | iscmet3.5 | |- ( ph -> F e. dom ( ~~>t ` J ) ) |
|
| 11 | eldmg | |- ( F e. dom ( ~~>t ` J ) -> ( F e. dom ( ~~>t ` J ) <-> E. x F ( ~~>t ` J ) x ) ) |
|
| 12 | 11 | ibi | |- ( F e. dom ( ~~>t ` J ) -> E. x F ( ~~>t ` J ) x ) |
| 13 | 10 12 | syl | |- ( ph -> E. x F ( ~~>t ` J ) x ) |
| 14 | metxmet | |- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 15 | 4 14 | syl | |- ( ph -> D e. ( *Met ` X ) ) |
| 16 | 2 | mopntopon | |- ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) |
| 17 | 15 16 | syl | |- ( ph -> J e. ( TopOn ` X ) ) |
| 18 | lmcl | |- ( ( J e. ( TopOn ` X ) /\ F ( ~~>t ` J ) x ) -> x e. X ) |
|
| 19 | 17 18 | sylan | |- ( ( ph /\ F ( ~~>t ` J ) x ) -> x e. X ) |
| 20 | 15 | adantr | |- ( ( ph /\ F ( ~~>t ` J ) x ) -> D e. ( *Met ` X ) ) |
| 21 | 2 | mopni2 | |- ( ( D e. ( *Met ` X ) /\ y e. J /\ x e. y ) -> E. r e. RR+ ( x ( ball ` D ) r ) C_ y ) |
| 22 | 21 | 3expia | |- ( ( D e. ( *Met ` X ) /\ y e. J ) -> ( x e. y -> E. r e. RR+ ( x ( ball ` D ) r ) C_ y ) ) |
| 23 | 20 22 | sylan | |- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ y e. J ) -> ( x e. y -> E. r e. RR+ ( x ( ball ` D ) r ) C_ y ) ) |
| 24 | 8 | ad3antrrr | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ y e. J ) /\ ( r e. RR+ /\ ( x ( ball ` D ) r ) C_ y ) ) -> G e. ( Fil ` X ) ) |
| 25 | 3 | ad2antrr | |- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> M e. ZZ ) |
| 26 | rphalfcl | |- ( r e. RR+ -> ( r / 2 ) e. RR+ ) |
|
| 27 | 26 | adantl | |- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> ( r / 2 ) e. RR+ ) |
| 28 | 1 | iscmet3lem3 | |- ( ( M e. ZZ /\ ( r / 2 ) e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < ( r / 2 ) ) |
| 29 | 25 27 28 | syl2anc | |- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < ( r / 2 ) ) |
| 30 | 20 | adantr | |- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> D e. ( *Met ` X ) ) |
| 31 | 19 | adantr | |- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> x e. X ) |
| 32 | blcntr | |- ( ( D e. ( *Met ` X ) /\ x e. X /\ ( r / 2 ) e. RR+ ) -> x e. ( x ( ball ` D ) ( r / 2 ) ) ) |
|
| 33 | 30 31 27 32 | syl3anc | |- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> x e. ( x ( ball ` D ) ( r / 2 ) ) ) |
| 34 | simplr | |- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> F ( ~~>t ` J ) x ) |
|
| 35 | 27 | rpxrd | |- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> ( r / 2 ) e. RR* ) |
| 36 | 2 | blopn | |- ( ( D e. ( *Met ` X ) /\ x e. X /\ ( r / 2 ) e. RR* ) -> ( x ( ball ` D ) ( r / 2 ) ) e. J ) |
| 37 | 30 31 35 36 | syl3anc | |- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> ( x ( ball ` D ) ( r / 2 ) ) e. J ) |
| 38 | 1 33 25 34 37 | lmcvg | |- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) |
| 39 | 1 | rexanuz2 | |- ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) <-> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ E. j e. Z A. k e. ( ZZ>= ` j ) ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) |
| 40 | 1 | r19.2uz | |- ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) -> E. k e. Z ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) |
| 41 | 8 | ad3antrrr | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ ( k e. Z /\ ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) ) -> G e. ( Fil ` X ) ) |
| 42 | 9 | ad3antrrr | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ ( k e. Z /\ ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) ) -> S : ZZ --> G ) |
| 43 | eluzelz | |- ( k e. ( ZZ>= ` M ) -> k e. ZZ ) |
|
| 44 | 43 1 | eleq2s | |- ( k e. Z -> k e. ZZ ) |
| 45 | 44 | ad2antrl | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ ( k e. Z /\ ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) ) -> k e. ZZ ) |
| 46 | ffvelcdm | |- ( ( S : ZZ --> G /\ k e. ZZ ) -> ( S ` k ) e. G ) |
|
| 47 | 42 45 46 | syl2anc | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ ( k e. Z /\ ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) ) -> ( S ` k ) e. G ) |
| 48 | rpxr | |- ( r e. RR+ -> r e. RR* ) |
|
| 49 | 48 | adantl | |- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> r e. RR* ) |
| 50 | blssm | |- ( ( D e. ( *Met ` X ) /\ x e. X /\ r e. RR* ) -> ( x ( ball ` D ) r ) C_ X ) |
|
| 51 | 30 31 49 50 | syl3anc | |- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> ( x ( ball ` D ) r ) C_ X ) |
| 52 | 51 | adantr | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ ( k e. Z /\ ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) ) -> ( x ( ball ` D ) r ) C_ X ) |
| 53 | 44 | adantl | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> k e. ZZ ) |
| 54 | 1rp | |- 1 e. RR+ |
|
| 55 | rphalfcl | |- ( 1 e. RR+ -> ( 1 / 2 ) e. RR+ ) |
|
| 56 | 54 55 | ax-mp | |- ( 1 / 2 ) e. RR+ |
| 57 | rpexpcl | |- ( ( ( 1 / 2 ) e. RR+ /\ k e. ZZ ) -> ( ( 1 / 2 ) ^ k ) e. RR+ ) |
|
| 58 | 56 57 | mpan | |- ( k e. ZZ -> ( ( 1 / 2 ) ^ k ) e. RR+ ) |
| 59 | 53 58 | syl | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( 1 / 2 ) ^ k ) e. RR+ ) |
| 60 | 59 | rpred | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( 1 / 2 ) ^ k ) e. RR ) |
| 61 | 27 | adantr | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( r / 2 ) e. RR+ ) |
| 62 | 61 | rpred | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( r / 2 ) e. RR ) |
| 63 | ltle | |- ( ( ( ( 1 / 2 ) ^ k ) e. RR /\ ( r / 2 ) e. RR ) -> ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) -> ( ( 1 / 2 ) ^ k ) <_ ( r / 2 ) ) ) |
|
| 64 | 60 62 63 | syl2anc | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) -> ( ( 1 / 2 ) ^ k ) <_ ( r / 2 ) ) ) |
| 65 | fveq2 | |- ( n = k -> ( S ` n ) = ( S ` k ) ) |
|
| 66 | 65 | eleq2d | |- ( n = k -> ( ( F ` k ) e. ( S ` n ) <-> ( F ` k ) e. ( S ` k ) ) ) |
| 67 | 7 | r19.21bi | |- ( ( ph /\ k e. Z ) -> A. n e. ( M ... k ) ( F ` k ) e. ( S ` n ) ) |
| 68 | eluzfz2 | |- ( k e. ( ZZ>= ` M ) -> k e. ( M ... k ) ) |
|
| 69 | 68 1 | eleq2s | |- ( k e. Z -> k e. ( M ... k ) ) |
| 70 | 69 | adantl | |- ( ( ph /\ k e. Z ) -> k e. ( M ... k ) ) |
| 71 | 66 67 70 | rspcdva | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. ( S ` k ) ) |
| 72 | 71 | adantr | |- ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> ( F ` k ) e. ( S ` k ) ) |
| 73 | simpr | |- ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> y e. ( S ` k ) ) |
|
| 74 | 6 | ad2antrr | |- ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> A. k e. ZZ A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) |
| 75 | 44 | ad2antlr | |- ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> k e. ZZ ) |
| 76 | rsp | |- ( A. k e. ZZ A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) -> ( k e. ZZ -> A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) ) |
|
| 77 | 74 75 76 | sylc | |- ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) |
| 78 | oveq1 | |- ( u = ( F ` k ) -> ( u D v ) = ( ( F ` k ) D v ) ) |
|
| 79 | 78 | breq1d | |- ( u = ( F ` k ) -> ( ( u D v ) < ( ( 1 / 2 ) ^ k ) <-> ( ( F ` k ) D v ) < ( ( 1 / 2 ) ^ k ) ) ) |
| 80 | oveq2 | |- ( v = y -> ( ( F ` k ) D v ) = ( ( F ` k ) D y ) ) |
|
| 81 | 80 | breq1d | |- ( v = y -> ( ( ( F ` k ) D v ) < ( ( 1 / 2 ) ^ k ) <-> ( ( F ` k ) D y ) < ( ( 1 / 2 ) ^ k ) ) ) |
| 82 | 79 81 | rspc2va | |- ( ( ( ( F ` k ) e. ( S ` k ) /\ y e. ( S ` k ) ) /\ A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) -> ( ( F ` k ) D y ) < ( ( 1 / 2 ) ^ k ) ) |
| 83 | 72 73 77 82 | syl21anc | |- ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> ( ( F ` k ) D y ) < ( ( 1 / 2 ) ^ k ) ) |
| 84 | 15 | ad2antrr | |- ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> D e. ( *Met ` X ) ) |
| 85 | 44 58 | syl | |- ( k e. Z -> ( ( 1 / 2 ) ^ k ) e. RR+ ) |
| 86 | 85 | rpxrd | |- ( k e. Z -> ( ( 1 / 2 ) ^ k ) e. RR* ) |
| 87 | 86 | ad2antlr | |- ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> ( ( 1 / 2 ) ^ k ) e. RR* ) |
| 88 | 5 | ffvelcdmda | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. X ) |
| 89 | 88 | adantr | |- ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> ( F ` k ) e. X ) |
| 90 | 8 | adantr | |- ( ( ph /\ k e. Z ) -> G e. ( Fil ` X ) ) |
| 91 | 9 44 46 | syl2an | |- ( ( ph /\ k e. Z ) -> ( S ` k ) e. G ) |
| 92 | filelss | |- ( ( G e. ( Fil ` X ) /\ ( S ` k ) e. G ) -> ( S ` k ) C_ X ) |
|
| 93 | 90 91 92 | syl2anc | |- ( ( ph /\ k e. Z ) -> ( S ` k ) C_ X ) |
| 94 | 93 | sselda | |- ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> y e. X ) |
| 95 | elbl2 | |- ( ( ( D e. ( *Met ` X ) /\ ( ( 1 / 2 ) ^ k ) e. RR* ) /\ ( ( F ` k ) e. X /\ y e. X ) ) -> ( y e. ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) <-> ( ( F ` k ) D y ) < ( ( 1 / 2 ) ^ k ) ) ) |
|
| 96 | 84 87 89 94 95 | syl22anc | |- ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> ( y e. ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) <-> ( ( F ` k ) D y ) < ( ( 1 / 2 ) ^ k ) ) ) |
| 97 | 83 96 | mpbird | |- ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> y e. ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) ) |
| 98 | 97 | ex | |- ( ( ph /\ k e. Z ) -> ( y e. ( S ` k ) -> y e. ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) ) ) |
| 99 | 98 | ssrdv | |- ( ( ph /\ k e. Z ) -> ( S ` k ) C_ ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) ) |
| 100 | 99 | ad4ant14 | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( S ` k ) C_ ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) ) |
| 101 | 30 | adantr | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> D e. ( *Met ` X ) ) |
| 102 | 5 | ad2antrr | |- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> F : Z --> X ) |
| 103 | 102 | ffvelcdmda | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( F ` k ) e. X ) |
| 104 | 59 | rpxrd | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( 1 / 2 ) ^ k ) e. RR* ) |
| 105 | 35 | adantr | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( r / 2 ) e. RR* ) |
| 106 | ssbl | |- ( ( ( D e. ( *Met ` X ) /\ ( F ` k ) e. X ) /\ ( ( ( 1 / 2 ) ^ k ) e. RR* /\ ( r / 2 ) e. RR* ) /\ ( ( 1 / 2 ) ^ k ) <_ ( r / 2 ) ) -> ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) C_ ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) |
|
| 107 | 106 | 3expia | |- ( ( ( D e. ( *Met ` X ) /\ ( F ` k ) e. X ) /\ ( ( ( 1 / 2 ) ^ k ) e. RR* /\ ( r / 2 ) e. RR* ) ) -> ( ( ( 1 / 2 ) ^ k ) <_ ( r / 2 ) -> ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) C_ ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) ) |
| 108 | 101 103 104 105 107 | syl22anc | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( ( 1 / 2 ) ^ k ) <_ ( r / 2 ) -> ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) C_ ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) ) |
| 109 | sstr | |- ( ( ( S ` k ) C_ ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) /\ ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) C_ ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) -> ( S ` k ) C_ ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) |
|
| 110 | 100 108 109 | syl6an | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( ( 1 / 2 ) ^ k ) <_ ( r / 2 ) -> ( S ` k ) C_ ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) ) |
| 111 | 64 110 | syld | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) -> ( S ` k ) C_ ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) ) |
| 112 | 111 | adantrd | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) -> ( S ` k ) C_ ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) ) |
| 113 | 112 | impr | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ ( k e. Z /\ ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) ) -> ( S ` k ) C_ ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) |
| 114 | 31 | adantr | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> x e. X ) |
| 115 | blcom | |- ( ( ( D e. ( *Met ` X ) /\ ( r / 2 ) e. RR* ) /\ ( x e. X /\ ( F ` k ) e. X ) ) -> ( ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) <-> x e. ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) ) |
|
| 116 | 101 105 114 103 115 | syl22anc | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) <-> x e. ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) ) |
| 117 | rpre | |- ( r e. RR+ -> r e. RR ) |
|
| 118 | 117 | ad2antlr | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> r e. RR ) |
| 119 | blhalf | |- ( ( ( D e. ( *Met ` X ) /\ ( F ` k ) e. X ) /\ ( r e. RR /\ x e. ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) ) -> ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) C_ ( x ( ball ` D ) r ) ) |
|
| 120 | 119 | expr | |- ( ( ( D e. ( *Met ` X ) /\ ( F ` k ) e. X ) /\ r e. RR ) -> ( x e. ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) -> ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) C_ ( x ( ball ` D ) r ) ) ) |
| 121 | 101 103 118 120 | syl21anc | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( x e. ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) -> ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) C_ ( x ( ball ` D ) r ) ) ) |
| 122 | 116 121 | sylbid | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) -> ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) C_ ( x ( ball ` D ) r ) ) ) |
| 123 | 122 | adantld | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) -> ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) C_ ( x ( ball ` D ) r ) ) ) |
| 124 | 123 | impr | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ ( k e. Z /\ ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) ) -> ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) C_ ( x ( ball ` D ) r ) ) |
| 125 | 113 124 | sstrd | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ ( k e. Z /\ ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) ) -> ( S ` k ) C_ ( x ( ball ` D ) r ) ) |
| 126 | filss | |- ( ( G e. ( Fil ` X ) /\ ( ( S ` k ) e. G /\ ( x ( ball ` D ) r ) C_ X /\ ( S ` k ) C_ ( x ( ball ` D ) r ) ) ) -> ( x ( ball ` D ) r ) e. G ) |
|
| 127 | 41 47 52 125 126 | syl13anc | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ ( k e. Z /\ ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) ) -> ( x ( ball ` D ) r ) e. G ) |
| 128 | 127 | rexlimdvaa | |- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> ( E. k e. Z ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) -> ( x ( ball ` D ) r ) e. G ) ) |
| 129 | 40 128 | syl5 | |- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) -> ( x ( ball ` D ) r ) e. G ) ) |
| 130 | 39 129 | biimtrrid | |- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> ( ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ E. j e. Z A. k e. ( ZZ>= ` j ) ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) -> ( x ( ball ` D ) r ) e. G ) ) |
| 131 | 29 38 130 | mp2and | |- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> ( x ( ball ` D ) r ) e. G ) |
| 132 | 131 | ad2ant2r | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ y e. J ) /\ ( r e. RR+ /\ ( x ( ball ` D ) r ) C_ y ) ) -> ( x ( ball ` D ) r ) e. G ) |
| 133 | 17 | adantr | |- ( ( ph /\ F ( ~~>t ` J ) x ) -> J e. ( TopOn ` X ) ) |
| 134 | toponss | |- ( ( J e. ( TopOn ` X ) /\ y e. J ) -> y C_ X ) |
|
| 135 | 133 134 | sylan | |- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ y e. J ) -> y C_ X ) |
| 136 | 135 | adantr | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ y e. J ) /\ ( r e. RR+ /\ ( x ( ball ` D ) r ) C_ y ) ) -> y C_ X ) |
| 137 | simprr | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ y e. J ) /\ ( r e. RR+ /\ ( x ( ball ` D ) r ) C_ y ) ) -> ( x ( ball ` D ) r ) C_ y ) |
|
| 138 | filss | |- ( ( G e. ( Fil ` X ) /\ ( ( x ( ball ` D ) r ) e. G /\ y C_ X /\ ( x ( ball ` D ) r ) C_ y ) ) -> y e. G ) |
|
| 139 | 24 132 136 137 138 | syl13anc | |- ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ y e. J ) /\ ( r e. RR+ /\ ( x ( ball ` D ) r ) C_ y ) ) -> y e. G ) |
| 140 | 139 | rexlimdvaa | |- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ y e. J ) -> ( E. r e. RR+ ( x ( ball ` D ) r ) C_ y -> y e. G ) ) |
| 141 | 23 140 | syld | |- ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ y e. J ) -> ( x e. y -> y e. G ) ) |
| 142 | 141 | ralrimiva | |- ( ( ph /\ F ( ~~>t ` J ) x ) -> A. y e. J ( x e. y -> y e. G ) ) |
| 143 | flimopn | |- ( ( J e. ( TopOn ` X ) /\ G e. ( Fil ` X ) ) -> ( x e. ( J fLim G ) <-> ( x e. X /\ A. y e. J ( x e. y -> y e. G ) ) ) ) |
|
| 144 | 17 8 143 | syl2anc | |- ( ph -> ( x e. ( J fLim G ) <-> ( x e. X /\ A. y e. J ( x e. y -> y e. G ) ) ) ) |
| 145 | 144 | adantr | |- ( ( ph /\ F ( ~~>t ` J ) x ) -> ( x e. ( J fLim G ) <-> ( x e. X /\ A. y e. J ( x e. y -> y e. G ) ) ) ) |
| 146 | 19 142 145 | mpbir2and | |- ( ( ph /\ F ( ~~>t ` J ) x ) -> x e. ( J fLim G ) ) |
| 147 | 146 | ne0d | |- ( ( ph /\ F ( ~~>t ` J ) x ) -> ( J fLim G ) =/= (/) ) |
| 148 | 13 147 | exlimddv | |- ( ph -> ( J fLim G ) =/= (/) ) |