This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of an extended metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasf1oxmet.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| imasf1oxmet.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| imasf1oxmet.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) | ||
| imasf1oxmet.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | ||
| imasf1oxmet.e | ⊢ 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) | ||
| imasf1oxmet.d | ⊢ 𝐷 = ( dist ‘ 𝑈 ) | ||
| imasf1oxmet.m | ⊢ ( 𝜑 → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) | ||
| Assertion | imasf1oxmet | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasf1oxmet.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| 2 | imasf1oxmet.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | imasf1oxmet.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) | |
| 4 | imasf1oxmet.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | |
| 5 | imasf1oxmet.e | ⊢ 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) | |
| 6 | imasf1oxmet.d | ⊢ 𝐷 = ( dist ‘ 𝑈 ) | |
| 7 | imasf1oxmet.m | ⊢ ( 𝜑 → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) | |
| 8 | f1ofo | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → 𝐹 : 𝑉 –onto→ 𝐵 ) | |
| 9 | 3 8 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) |
| 10 | eqid | ⊢ ( dist ‘ 𝑅 ) = ( dist ‘ 𝑅 ) | |
| 11 | 1 2 9 4 10 6 | imasdsfn | ⊢ ( 𝜑 → 𝐷 Fn ( 𝐵 × 𝐵 ) ) |
| 12 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑈 = ( 𝐹 “s 𝑅 ) ) |
| 13 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 14 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) |
| 15 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑅 ∈ 𝑍 ) |
| 16 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 17 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑎 ∈ 𝑉 ) | |
| 18 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑏 ∈ 𝑉 ) | |
| 19 | 12 13 14 15 5 6 16 17 18 | imasdsf1o | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) = ( 𝑎 𝐸 𝑏 ) ) |
| 20 | xmetcl | ⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑎 𝐸 𝑏 ) ∈ ℝ* ) | |
| 21 | 20 | 3expb | ⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( 𝑎 𝐸 𝑏 ) ∈ ℝ* ) |
| 22 | 7 21 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( 𝑎 𝐸 𝑏 ) ∈ ℝ* ) |
| 23 | 19 22 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ∈ ℝ* ) |
| 24 | 23 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ∈ ℝ* ) |
| 25 | f1ofn | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → 𝐹 Fn 𝑉 ) | |
| 26 | 3 25 | syl | ⊢ ( 𝜑 → 𝐹 Fn 𝑉 ) |
| 27 | oveq2 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) | |
| 28 | 27 | eleq1d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ* ↔ ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ∈ ℝ* ) ) |
| 29 | 28 | ralrn | ⊢ ( 𝐹 Fn 𝑉 → ( ∀ 𝑦 ∈ ran 𝐹 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ* ↔ ∀ 𝑏 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ∈ ℝ* ) ) |
| 30 | 26 29 | syl | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ran 𝐹 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ* ↔ ∀ 𝑏 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ∈ ℝ* ) ) |
| 31 | forn | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) | |
| 32 | 9 31 | syl | ⊢ ( 𝜑 → ran 𝐹 = 𝐵 ) |
| 33 | 32 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ran 𝐹 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ* ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ* ) ) |
| 34 | 30 33 | bitr3d | ⊢ ( 𝜑 → ( ∀ 𝑏 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ∈ ℝ* ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ* ) ) |
| 35 | 34 | ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ∈ ℝ* ↔ ∀ 𝑎 ∈ 𝑉 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ* ) ) |
| 36 | 24 35 | mpbid | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑉 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ* ) |
| 37 | oveq1 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( 𝑥 𝐷 𝑦 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ) | |
| 38 | 37 | eleq1d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ↔ ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ* ) ) |
| 39 | 38 | ralbidv | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ* ) ) |
| 40 | 39 | ralrn | ⊢ ( 𝐹 Fn 𝑉 → ( ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ↔ ∀ 𝑎 ∈ 𝑉 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ* ) ) |
| 41 | 26 40 | syl | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ↔ ∀ 𝑎 ∈ 𝑉 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ* ) ) |
| 42 | 32 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ) ) |
| 43 | 41 42 | bitr3d | ⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ* ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ) ) |
| 44 | 36 43 | mpbid | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ) |
| 45 | ffnov | ⊢ ( 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ℝ* ↔ ( 𝐷 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ) ) | |
| 46 | 11 44 45 | sylanbrc | ⊢ ( 𝜑 → 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ℝ* ) |
| 47 | xmeteq0 | ⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝑎 𝐸 𝑏 ) = 0 ↔ 𝑎 = 𝑏 ) ) | |
| 48 | 16 17 18 47 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝑎 𝐸 𝑏 ) = 0 ↔ 𝑎 = 𝑏 ) ) |
| 49 | 19 | eqeq1d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) = 0 ↔ ( 𝑎 𝐸 𝑏 ) = 0 ) ) |
| 50 | f1of1 | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → 𝐹 : 𝑉 –1-1→ 𝐵 ) | |
| 51 | 3 50 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1→ 𝐵 ) |
| 52 | f1fveq | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ↔ 𝑎 = 𝑏 ) ) | |
| 53 | 51 52 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ↔ 𝑎 = 𝑏 ) ) |
| 54 | 48 49 53 | 3bitr4d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ) |
| 55 | 16 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑐 ∈ 𝑉 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 56 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑐 ∈ 𝑉 ) → 𝑐 ∈ 𝑉 ) | |
| 57 | 17 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑐 ∈ 𝑉 ) → 𝑎 ∈ 𝑉 ) |
| 58 | 18 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑐 ∈ 𝑉 ) → 𝑏 ∈ 𝑉 ) |
| 59 | xmettri2 | ⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( 𝑎 𝐸 𝑏 ) ≤ ( ( 𝑐 𝐸 𝑎 ) +𝑒 ( 𝑐 𝐸 𝑏 ) ) ) | |
| 60 | 55 56 57 58 59 | syl13anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑐 ∈ 𝑉 ) → ( 𝑎 𝐸 𝑏 ) ≤ ( ( 𝑐 𝐸 𝑎 ) +𝑒 ( 𝑐 𝐸 𝑏 ) ) ) |
| 61 | 19 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) = ( 𝑎 𝐸 𝑏 ) ) |
| 62 | 12 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑐 ∈ 𝑉 ) → 𝑈 = ( 𝐹 “s 𝑅 ) ) |
| 63 | 13 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑐 ∈ 𝑉 ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 64 | 14 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑐 ∈ 𝑉 ) → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) |
| 65 | 15 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑐 ∈ 𝑉 ) → 𝑅 ∈ 𝑍 ) |
| 66 | 62 63 64 65 5 6 55 56 57 | imasdsf1o | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) ) = ( 𝑐 𝐸 𝑎 ) ) |
| 67 | 62 63 64 65 5 6 55 56 58 | imasdsf1o | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) = ( 𝑐 𝐸 𝑏 ) ) |
| 68 | 66 67 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑐 ∈ 𝑉 ) → ( ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) = ( ( 𝑐 𝐸 𝑎 ) +𝑒 ( 𝑐 𝐸 𝑏 ) ) ) |
| 69 | 60 61 68 | 3brtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 70 | 69 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ∀ 𝑐 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 71 | oveq1 | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) = ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) ) ) | |
| 72 | oveq1 | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) | |
| 73 | 71 72 | oveq12d | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) = ( ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 74 | 73 | breq2d | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑐 ) → ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ↔ ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) |
| 75 | 74 | ralrn | ⊢ ( 𝐹 Fn 𝑉 → ( ∀ 𝑧 ∈ ran 𝐹 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ↔ ∀ 𝑐 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) |
| 76 | 26 75 | syl | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran 𝐹 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ↔ ∀ 𝑐 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) |
| 77 | 32 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran 𝐹 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) |
| 78 | 76 77 | bitr3d | ⊢ ( 𝜑 → ( ∀ 𝑐 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) |
| 79 | 78 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ∀ 𝑐 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( ( 𝐹 ‘ 𝑐 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) |
| 80 | 70 79 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 81 | 54 80 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) |
| 82 | 81 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) |
| 83 | 27 | eqeq1d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) = 0 ) ) |
| 84 | eqeq2 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ( 𝐹 ‘ 𝑎 ) = 𝑦 ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ) | |
| 85 | 83 84 | bibi12d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ↔ ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 86 | oveq2 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( 𝑧 𝐷 𝑦 ) = ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) | |
| 87 | 86 | oveq2d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) = ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 88 | 27 87 | breq12d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ↔ ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) |
| 89 | 88 | ralbidv | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) |
| 90 | 85 89 | anbi12d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ↔ ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) ) |
| 91 | 90 | ralrn | ⊢ ( 𝐹 Fn 𝑉 → ( ∀ 𝑦 ∈ ran 𝐹 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ↔ ∀ 𝑏 ∈ 𝑉 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) ) |
| 92 | 26 91 | syl | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ran 𝐹 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ↔ ∀ 𝑏 ∈ 𝑉 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ) ) |
| 93 | 32 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ran 𝐹 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
| 94 | 92 93 | bitr3d | ⊢ ( 𝜑 → ( ∀ 𝑏 ∈ 𝑉 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
| 95 | 94 | ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) ) ↔ ∀ 𝑎 ∈ 𝑉 ∀ 𝑦 ∈ 𝐵 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
| 96 | 82 95 | mpbid | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑉 ∀ 𝑦 ∈ 𝐵 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) |
| 97 | 37 | eqeq1d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ) ) |
| 98 | eqeq1 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( 𝑥 = 𝑦 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ) | |
| 99 | 97 98 | bibi12d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ↔ ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ) ) |
| 100 | oveq2 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( 𝑧 𝐷 𝑥 ) = ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) ) | |
| 101 | 100 | oveq1d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) = ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) |
| 102 | 37 101 | breq12d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ↔ ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) |
| 103 | 102 | ralbidv | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) |
| 104 | 99 103 | anbi12d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ↔ ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
| 105 | 104 | ralbidv | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
| 106 | 105 | ralrn | ⊢ ( 𝐹 Fn 𝑉 → ( ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ↔ ∀ 𝑎 ∈ 𝑉 ∀ 𝑦 ∈ 𝐵 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
| 107 | 26 106 | syl | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ↔ ∀ 𝑎 ∈ 𝑉 ∀ 𝑦 ∈ 𝐵 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
| 108 | 32 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
| 109 | 107 108 | bitr3d | ⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑦 ∈ 𝐵 ( ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = 0 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 ( 𝐹 ‘ 𝑎 ) ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
| 110 | 96 109 | mpbid | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) |
| 111 | 7 | elfvexd | ⊢ ( 𝜑 → 𝑉 ∈ V ) |
| 112 | focdmex | ⊢ ( 𝑉 ∈ V → ( 𝐹 : 𝑉 –onto→ 𝐵 → 𝐵 ∈ V ) ) | |
| 113 | 111 9 112 | sylc | ⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 114 | isxmet | ⊢ ( 𝐵 ∈ V → ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ↔ ( 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) | |
| 115 | 113 114 | syl | ⊢ ( 𝜑 → ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ↔ ( 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) |
| 116 | 46 110 115 | mpbir2and | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ) |