This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a metric is a metric. (Contributed by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasf1oxmet.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| imasf1oxmet.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| imasf1oxmet.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) | ||
| imasf1oxmet.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | ||
| imasf1oxmet.e | ⊢ 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) | ||
| imasf1oxmet.d | ⊢ 𝐷 = ( dist ‘ 𝑈 ) | ||
| imasf1omet.m | ⊢ ( 𝜑 → 𝐸 ∈ ( Met ‘ 𝑉 ) ) | ||
| Assertion | imasf1omet | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasf1oxmet.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| 2 | imasf1oxmet.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | imasf1oxmet.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) | |
| 4 | imasf1oxmet.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | |
| 5 | imasf1oxmet.e | ⊢ 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) | |
| 6 | imasf1oxmet.d | ⊢ 𝐷 = ( dist ‘ 𝑈 ) | |
| 7 | imasf1omet.m | ⊢ ( 𝜑 → 𝐸 ∈ ( Met ‘ 𝑉 ) ) | |
| 8 | metxmet | ⊢ ( 𝐸 ∈ ( Met ‘ 𝑉 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝜑 → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 10 | 1 2 3 4 5 6 9 | imasf1oxmet | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ) |
| 11 | f1ofo | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → 𝐹 : 𝑉 –onto→ 𝐵 ) | |
| 12 | 3 11 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) |
| 13 | eqid | ⊢ ( dist ‘ 𝑅 ) = ( dist ‘ 𝑅 ) | |
| 14 | 1 2 12 4 13 6 | imasdsfn | ⊢ ( 𝜑 → 𝐷 Fn ( 𝐵 × 𝐵 ) ) |
| 15 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑈 = ( 𝐹 “s 𝑅 ) ) |
| 16 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 17 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) |
| 18 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑅 ∈ 𝑍 ) |
| 19 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 20 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑎 ∈ 𝑉 ) | |
| 21 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑏 ∈ 𝑉 ) | |
| 22 | 15 16 17 18 5 6 19 20 21 | imasdsf1o | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) = ( 𝑎 𝐸 𝑏 ) ) |
| 23 | metcl | ⊢ ( ( 𝐸 ∈ ( Met ‘ 𝑉 ) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑎 𝐸 𝑏 ) ∈ ℝ ) | |
| 24 | 23 | 3expb | ⊢ ( ( 𝐸 ∈ ( Met ‘ 𝑉 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( 𝑎 𝐸 𝑏 ) ∈ ℝ ) |
| 25 | 7 24 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( 𝑎 𝐸 𝑏 ) ∈ ℝ ) |
| 26 | 22 25 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ∈ ℝ ) |
| 27 | 26 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ∈ ℝ ) |
| 28 | f1ofn | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → 𝐹 Fn 𝑉 ) | |
| 29 | 3 28 | syl | ⊢ ( 𝜑 → 𝐹 Fn 𝑉 ) |
| 30 | oveq2 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ) | |
| 31 | 30 | eleq1d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑏 ) → ( ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ ↔ ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ∈ ℝ ) ) |
| 32 | 31 | ralrn | ⊢ ( 𝐹 Fn 𝑉 → ( ∀ 𝑦 ∈ ran 𝐹 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ ↔ ∀ 𝑏 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ∈ ℝ ) ) |
| 33 | 29 32 | syl | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ran 𝐹 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ ↔ ∀ 𝑏 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ∈ ℝ ) ) |
| 34 | forn | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) | |
| 35 | 12 34 | syl | ⊢ ( 𝜑 → ran 𝐹 = 𝐵 ) |
| 36 | 35 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ran 𝐹 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ ) ) |
| 37 | 33 36 | bitr3d | ⊢ ( 𝜑 → ( ∀ 𝑏 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ∈ ℝ ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ ) ) |
| 38 | 37 | ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) 𝐷 ( 𝐹 ‘ 𝑏 ) ) ∈ ℝ ↔ ∀ 𝑎 ∈ 𝑉 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ ) ) |
| 39 | 27 38 | mpbid | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑉 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ ) |
| 40 | oveq1 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( 𝑥 𝐷 𝑦 ) = ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ) | |
| 41 | 40 | eleq1d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ ↔ ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ ) ) |
| 42 | 41 | ralbidv | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑎 ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ∈ ℝ ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ ) ) |
| 43 | 42 | ralrn | ⊢ ( 𝐹 Fn 𝑉 → ( ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ∈ ℝ ↔ ∀ 𝑎 ∈ 𝑉 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ ) ) |
| 44 | 29 43 | syl | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ∈ ℝ ↔ ∀ 𝑎 ∈ 𝑉 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ ) ) |
| 45 | 35 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ∈ ℝ ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ∈ ℝ ) ) |
| 46 | 44 45 | bitr3d | ⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝑉 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) 𝐷 𝑦 ) ∈ ℝ ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ∈ ℝ ) ) |
| 47 | 39 46 | mpbid | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ∈ ℝ ) |
| 48 | ffnov | ⊢ ( 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ℝ ↔ ( 𝐷 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐷 𝑦 ) ∈ ℝ ) ) | |
| 49 | 14 47 48 | sylanbrc | ⊢ ( 𝜑 → 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ℝ ) |
| 50 | ismet2 | ⊢ ( 𝐷 ∈ ( Met ‘ 𝐵 ) ↔ ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ∧ 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ℝ ) ) | |
| 51 | 10 49 50 | sylanbrc | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝐵 ) ) |