This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the predicate " D is an extended metric." (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isxmet | ⊢ ( 𝑋 ∈ 𝐴 → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝑋 ∈ 𝐴 → 𝑋 ∈ V ) | |
| 2 | xpeq12 | ⊢ ( ( 𝑡 = 𝑋 ∧ 𝑡 = 𝑋 ) → ( 𝑡 × 𝑡 ) = ( 𝑋 × 𝑋 ) ) | |
| 3 | 2 | anidms | ⊢ ( 𝑡 = 𝑋 → ( 𝑡 × 𝑡 ) = ( 𝑋 × 𝑋 ) ) |
| 4 | 3 | oveq2d | ⊢ ( 𝑡 = 𝑋 → ( ℝ* ↑m ( 𝑡 × 𝑡 ) ) = ( ℝ* ↑m ( 𝑋 × 𝑋 ) ) ) |
| 5 | raleq | ⊢ ( 𝑡 = 𝑋 → ( ∀ 𝑧 ∈ 𝑡 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ↔ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) ) | |
| 6 | 5 | anbi2d | ⊢ ( 𝑡 = 𝑋 → ( ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑡 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) ↔ ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) ) ) |
| 7 | 6 | raleqbi1dv | ⊢ ( 𝑡 = 𝑋 → ( ∀ 𝑦 ∈ 𝑡 ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑡 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) ) ) |
| 8 | 7 | raleqbi1dv | ⊢ ( 𝑡 = 𝑋 → ( ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑡 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) ) ) |
| 9 | 4 8 | rabeqbidv | ⊢ ( 𝑡 = 𝑋 → { 𝑑 ∈ ( ℝ* ↑m ( 𝑡 × 𝑡 ) ) ∣ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑡 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) } = { 𝑑 ∈ ( ℝ* ↑m ( 𝑋 × 𝑋 ) ) ∣ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) } ) |
| 10 | df-xmet | ⊢ ∞Met = ( 𝑡 ∈ V ↦ { 𝑑 ∈ ( ℝ* ↑m ( 𝑡 × 𝑡 ) ) ∣ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑡 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) } ) | |
| 11 | ovex | ⊢ ( ℝ* ↑m ( 𝑋 × 𝑋 ) ) ∈ V | |
| 12 | 11 | rabex | ⊢ { 𝑑 ∈ ( ℝ* ↑m ( 𝑋 × 𝑋 ) ) ∣ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) } ∈ V |
| 13 | 9 10 12 | fvmpt | ⊢ ( 𝑋 ∈ V → ( ∞Met ‘ 𝑋 ) = { 𝑑 ∈ ( ℝ* ↑m ( 𝑋 × 𝑋 ) ) ∣ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) } ) |
| 14 | 1 13 | syl | ⊢ ( 𝑋 ∈ 𝐴 → ( ∞Met ‘ 𝑋 ) = { 𝑑 ∈ ( ℝ* ↑m ( 𝑋 × 𝑋 ) ) ∣ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) } ) |
| 15 | 14 | eleq2d | ⊢ ( 𝑋 ∈ 𝐴 → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ↔ 𝐷 ∈ { 𝑑 ∈ ( ℝ* ↑m ( 𝑋 × 𝑋 ) ) ∣ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) } ) ) |
| 16 | oveq | ⊢ ( 𝑑 = 𝐷 → ( 𝑥 𝑑 𝑦 ) = ( 𝑥 𝐷 𝑦 ) ) | |
| 17 | 16 | eqeq1d | ⊢ ( 𝑑 = 𝐷 → ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ ( 𝑥 𝐷 𝑦 ) = 0 ) ) |
| 18 | 17 | bibi1d | ⊢ ( 𝑑 = 𝐷 → ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ↔ ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ) ) |
| 19 | oveq | ⊢ ( 𝑑 = 𝐷 → ( 𝑧 𝑑 𝑥 ) = ( 𝑧 𝐷 𝑥 ) ) | |
| 20 | oveq | ⊢ ( 𝑑 = 𝐷 → ( 𝑧 𝑑 𝑦 ) = ( 𝑧 𝐷 𝑦 ) ) | |
| 21 | 19 20 | oveq12d | ⊢ ( 𝑑 = 𝐷 → ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) = ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) |
| 22 | 16 21 | breq12d | ⊢ ( 𝑑 = 𝐷 → ( ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ↔ ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) |
| 23 | 22 | ralbidv | ⊢ ( 𝑑 = 𝐷 → ( ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ↔ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) |
| 24 | 18 23 | anbi12d | ⊢ ( 𝑑 = 𝐷 → ( ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) ↔ ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
| 25 | 24 | 2ralbidv | ⊢ ( 𝑑 = 𝐷 → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
| 26 | 25 | elrab | ⊢ ( 𝐷 ∈ { 𝑑 ∈ ( ℝ* ↑m ( 𝑋 × 𝑋 ) ) ∣ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝑑 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝑑 𝑦 ) ≤ ( ( 𝑧 𝑑 𝑥 ) +𝑒 ( 𝑧 𝑑 𝑦 ) ) ) } ↔ ( 𝐷 ∈ ( ℝ* ↑m ( 𝑋 × 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
| 27 | 15 26 | bitrdi | ⊢ ( 𝑋 ∈ 𝐴 → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ↔ ( 𝐷 ∈ ( ℝ* ↑m ( 𝑋 × 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) |
| 28 | xrex | ⊢ ℝ* ∈ V | |
| 29 | sqxpexg | ⊢ ( 𝑋 ∈ 𝐴 → ( 𝑋 × 𝑋 ) ∈ V ) | |
| 30 | elmapg | ⊢ ( ( ℝ* ∈ V ∧ ( 𝑋 × 𝑋 ) ∈ V ) → ( 𝐷 ∈ ( ℝ* ↑m ( 𝑋 × 𝑋 ) ) ↔ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) ) | |
| 31 | 28 29 30 | sylancr | ⊢ ( 𝑋 ∈ 𝐴 → ( 𝐷 ∈ ( ℝ* ↑m ( 𝑋 × 𝑋 ) ) ↔ 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) ) |
| 32 | 31 | anbi1d | ⊢ ( 𝑋 ∈ 𝐴 → ( ( 𝐷 ∈ ( ℝ* ↑m ( 𝑋 × 𝑋 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) |
| 33 | 27 32 | bitrd | ⊢ ( 𝑋 ∈ 𝐴 → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) |