This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance function is a function on the base set. (Contributed by Mario Carneiro, 20-Aug-2015) (Proof shortened by AV, 6-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasbas.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| imasbas.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| imasbas.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | ||
| imasbas.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | ||
| imasds.e | ⊢ 𝐸 = ( dist ‘ 𝑅 ) | ||
| imasds.d | ⊢ 𝐷 = ( dist ‘ 𝑈 ) | ||
| Assertion | imasdsfn | ⊢ ( 𝜑 → 𝐷 Fn ( 𝐵 × 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasbas.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| 2 | imasbas.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | imasbas.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | |
| 4 | imasbas.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | |
| 5 | imasds.e | ⊢ 𝐸 = ( dist ‘ 𝑅 ) | |
| 6 | imasds.d | ⊢ 𝐷 = ( dist ‘ 𝑈 ) | |
| 7 | eqid | ⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) , ℝ* , < ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) , ℝ* , < ) ) | |
| 8 | xrltso | ⊢ < Or ℝ* | |
| 9 | 8 | infex | ⊢ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) , ℝ* , < ) ∈ V |
| 10 | 7 9 | fnmpoi | ⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) , ℝ* , < ) ) Fn ( 𝐵 × 𝐵 ) |
| 11 | 1 2 3 4 5 6 | imasds | ⊢ ( 𝜑 → 𝐷 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) , ℝ* , < ) ) ) |
| 12 | 11 | fneq1d | ⊢ ( 𝜑 → ( 𝐷 Fn ( 𝐵 × 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ inf ( ∪ 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ℎ ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ℎ ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸 ∘ 𝑔 ) ) ) , ℝ* , < ) ) Fn ( 𝐵 × 𝐵 ) ) ) |
| 13 | 10 12 | mpbiri | ⊢ ( 𝜑 → 𝐷 Fn ( 𝐵 × 𝐵 ) ) |