This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for icccmp . (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | icccmp.1 | ⊢ 𝐽 = ( topGen ‘ ran (,) ) | |
| icccmp.2 | ⊢ 𝑇 = ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) | ||
| icccmp.3 | ⊢ 𝐷 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | ||
| icccmp.4 | ⊢ 𝑆 = { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 } | ||
| icccmp.5 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| icccmp.6 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| icccmp.7 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| icccmp.8 | ⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) | ||
| icccmp.9 | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑈 ) | ||
| Assertion | icccmplem1 | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icccmp.1 | ⊢ 𝐽 = ( topGen ‘ ran (,) ) | |
| 2 | icccmp.2 | ⊢ 𝑇 = ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) | |
| 3 | icccmp.3 | ⊢ 𝐷 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | |
| 4 | icccmp.4 | ⊢ 𝑆 = { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 } | |
| 5 | icccmp.5 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 6 | icccmp.6 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 7 | icccmp.7 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 8 | icccmp.8 | ⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) | |
| 9 | icccmp.9 | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑈 ) | |
| 10 | 5 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 11 | 6 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 12 | lbicc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 13 | 10 11 7 12 | syl3anc | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 14 | 9 13 | sseldd | ⊢ ( 𝜑 → 𝐴 ∈ ∪ 𝑈 ) |
| 15 | eluni2 | ⊢ ( 𝐴 ∈ ∪ 𝑈 ↔ ∃ 𝑢 ∈ 𝑈 𝐴 ∈ 𝑢 ) | |
| 16 | 14 15 | sylib | ⊢ ( 𝜑 → ∃ 𝑢 ∈ 𝑈 𝐴 ∈ 𝑢 ) |
| 17 | snssi | ⊢ ( 𝑢 ∈ 𝑈 → { 𝑢 } ⊆ 𝑈 ) | |
| 18 | 17 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑈 ∧ 𝐴 ∈ 𝑢 ) ) → { 𝑢 } ⊆ 𝑈 ) |
| 19 | snex | ⊢ { 𝑢 } ∈ V | |
| 20 | 19 | elpw | ⊢ ( { 𝑢 } ∈ 𝒫 𝑈 ↔ { 𝑢 } ⊆ 𝑈 ) |
| 21 | 18 20 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑈 ∧ 𝐴 ∈ 𝑢 ) ) → { 𝑢 } ∈ 𝒫 𝑈 ) |
| 22 | snfi | ⊢ { 𝑢 } ∈ Fin | |
| 23 | 22 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑈 ∧ 𝐴 ∈ 𝑢 ) ) → { 𝑢 } ∈ Fin ) |
| 24 | 21 23 | elind | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑈 ∧ 𝐴 ∈ 𝑢 ) ) → { 𝑢 } ∈ ( 𝒫 𝑈 ∩ Fin ) ) |
| 25 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑈 ∧ 𝐴 ∈ 𝑢 ) ) → 𝐴 ∈ ℝ* ) |
| 26 | iccid | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 [,] 𝐴 ) = { 𝐴 } ) | |
| 27 | 25 26 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑈 ∧ 𝐴 ∈ 𝑢 ) ) → ( 𝐴 [,] 𝐴 ) = { 𝐴 } ) |
| 28 | snssi | ⊢ ( 𝐴 ∈ 𝑢 → { 𝐴 } ⊆ 𝑢 ) | |
| 29 | 28 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑈 ∧ 𝐴 ∈ 𝑢 ) ) → { 𝐴 } ⊆ 𝑢 ) |
| 30 | 27 29 | eqsstrd | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑈 ∧ 𝐴 ∈ 𝑢 ) ) → ( 𝐴 [,] 𝐴 ) ⊆ 𝑢 ) |
| 31 | unieq | ⊢ ( 𝑧 = { 𝑢 } → ∪ 𝑧 = ∪ { 𝑢 } ) | |
| 32 | unisnv | ⊢ ∪ { 𝑢 } = 𝑢 | |
| 33 | 31 32 | eqtrdi | ⊢ ( 𝑧 = { 𝑢 } → ∪ 𝑧 = 𝑢 ) |
| 34 | 33 | sseq2d | ⊢ ( 𝑧 = { 𝑢 } → ( ( 𝐴 [,] 𝐴 ) ⊆ ∪ 𝑧 ↔ ( 𝐴 [,] 𝐴 ) ⊆ 𝑢 ) ) |
| 35 | 34 | rspcev | ⊢ ( ( { 𝑢 } ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝐴 ) ⊆ 𝑢 ) → ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝐴 ) ⊆ ∪ 𝑧 ) |
| 36 | 24 30 35 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑈 ∧ 𝐴 ∈ 𝑢 ) ) → ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝐴 ) ⊆ ∪ 𝑧 ) |
| 37 | 16 36 | rexlimddv | ⊢ ( 𝜑 → ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝐴 ) ⊆ ∪ 𝑧 ) |
| 38 | oveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐴 [,] 𝑥 ) = ( 𝐴 [,] 𝐴 ) ) | |
| 39 | 38 | sseq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 ↔ ( 𝐴 [,] 𝐴 ) ⊆ ∪ 𝑧 ) ) |
| 40 | 39 | rexbidv | ⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 ↔ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝐴 ) ⊆ ∪ 𝑧 ) ) |
| 41 | 40 4 | elrab2 | ⊢ ( 𝐴 ∈ 𝑆 ↔ ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ∧ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝐴 ) ⊆ ∪ 𝑧 ) ) |
| 42 | 13 37 41 | sylanbrc | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
| 43 | 4 | ssrab3 | ⊢ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) |
| 44 | 43 | sseli | ⊢ ( 𝑦 ∈ 𝑆 → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 45 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) ) | |
| 46 | 5 6 45 | syl2anc | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) ) |
| 47 | 46 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) |
| 48 | 47 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ≤ 𝐵 ) |
| 49 | 44 48 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ≤ 𝐵 ) |
| 50 | 49 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝐵 ) |
| 51 | 42 50 | jca | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝐵 ) ) |