This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of icchmeo as of 9-Apr-2025. (Contributed by Mario Carneiro, 8-Sep-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | icchmeoOLD.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| icchmeoOLD.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 𝐵 ) + ( ( 1 − 𝑥 ) · 𝐴 ) ) ) | ||
| Assertion | icchmeoOLD | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐹 ∈ ( II Homeo ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icchmeoOLD.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 2 | icchmeoOLD.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 𝐵 ) + ( ( 1 − 𝑥 ) · 𝐴 ) ) ) | |
| 3 | iitopon | ⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) | |
| 4 | 3 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
| 5 | 1 | dfii3 | ⊢ II = ( 𝐽 ↾t ( 0 [,] 1 ) ) |
| 6 | 5 | oveq2i | ⊢ ( II Cn II ) = ( II Cn ( 𝐽 ↾t ( 0 [,] 1 ) ) ) |
| 7 | 1 | cnfldtop | ⊢ 𝐽 ∈ Top |
| 8 | cnrest2r | ⊢ ( 𝐽 ∈ Top → ( II Cn ( 𝐽 ↾t ( 0 [,] 1 ) ) ) ⊆ ( II Cn 𝐽 ) ) | |
| 9 | 7 8 | ax-mp | ⊢ ( II Cn ( 𝐽 ↾t ( 0 [,] 1 ) ) ) ⊆ ( II Cn 𝐽 ) |
| 10 | 6 9 | eqsstri | ⊢ ( II Cn II ) ⊆ ( II Cn 𝐽 ) |
| 11 | 4 | cnmptid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 𝑥 ) ∈ ( II Cn II ) ) |
| 12 | 10 11 | sselid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 𝑥 ) ∈ ( II Cn 𝐽 ) ) |
| 13 | 1 | cnfldtopon | ⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
| 14 | 13 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐽 ∈ ( TopOn ‘ ℂ ) ) |
| 15 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℝ ) | |
| 16 | 15 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℂ ) |
| 17 | 4 14 16 | cnmptc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 𝐵 ) ∈ ( II Cn 𝐽 ) ) |
| 18 | 1 | mulcn | ⊢ · ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
| 19 | 18 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → · ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 20 | 4 12 17 19 | cnmpt12f | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 · 𝐵 ) ) ∈ ( II Cn 𝐽 ) ) |
| 21 | 1cnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 1 ∈ ℂ ) | |
| 22 | 4 14 21 | cnmptc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 1 ) ∈ ( II Cn 𝐽 ) ) |
| 23 | 1 | subcn | ⊢ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
| 24 | 23 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 25 | 4 22 12 24 | cnmpt12f | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑥 ) ) ∈ ( II Cn 𝐽 ) ) |
| 26 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ ) | |
| 27 | 26 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℂ ) |
| 28 | 4 14 27 | cnmptc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 𝐴 ) ∈ ( II Cn 𝐽 ) ) |
| 29 | 4 25 28 19 | cnmpt12f | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 1 − 𝑥 ) · 𝐴 ) ) ∈ ( II Cn 𝐽 ) ) |
| 30 | 1 | addcn | ⊢ + ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
| 31 | 30 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → + ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 32 | 4 20 29 31 | cnmpt12f | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 𝐵 ) + ( ( 1 − 𝑥 ) · 𝐴 ) ) ) ∈ ( II Cn 𝐽 ) ) |
| 33 | 2 32 | eqeltrid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐹 ∈ ( II Cn 𝐽 ) ) |
| 34 | 2 | iccf1o | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 𝐴 [,] 𝐵 ) ∧ ◡ 𝐹 = ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) ) |
| 35 | 34 | simpld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 𝐴 [,] 𝐵 ) ) |
| 36 | f1of | ⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 𝐴 [,] 𝐵 ) → 𝐹 : ( 0 [,] 1 ) ⟶ ( 𝐴 [,] 𝐵 ) ) | |
| 37 | frn | ⊢ ( 𝐹 : ( 0 [,] 1 ) ⟶ ( 𝐴 [,] 𝐵 ) → ran 𝐹 ⊆ ( 𝐴 [,] 𝐵 ) ) | |
| 38 | 35 36 37 | 3syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ran 𝐹 ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 39 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 40 | 39 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 41 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 42 | 40 41 | sstrdi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 43 | cnrest2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ ran 𝐹 ⊆ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) → ( 𝐹 ∈ ( II Cn 𝐽 ) ↔ 𝐹 ∈ ( II Cn ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ) ) | |
| 44 | 13 38 42 43 | mp3an2i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐹 ∈ ( II Cn 𝐽 ) ↔ 𝐹 ∈ ( II Cn ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ) ) |
| 45 | 33 44 | mpbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐹 ∈ ( II Cn ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ) |
| 46 | 34 | simprd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ◡ 𝐹 = ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) |
| 47 | resttopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) → ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ) | |
| 48 | 13 42 47 | sylancr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 49 | cnrest2r | ⊢ ( 𝐽 ∈ Top → ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ⊆ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ) | |
| 50 | 7 49 | ax-mp | ⊢ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ⊆ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) |
| 51 | 48 | cnmptid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑦 ) ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ) |
| 52 | 50 51 | sselid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑦 ) ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ) |
| 53 | 48 14 27 | cnmptc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐴 ) ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ) |
| 54 | 48 52 53 24 | cnmpt12f | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑦 − 𝐴 ) ) ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ) |
| 55 | difrp | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐵 − 𝐴 ) ∈ ℝ+ ) ) | |
| 56 | 55 | biimp3a | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐵 − 𝐴 ) ∈ ℝ+ ) |
| 57 | 56 | rpcnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐵 − 𝐴 ) ∈ ℂ ) |
| 58 | 56 | rpne0d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐵 − 𝐴 ) ≠ 0 ) |
| 59 | 1 | divccn | ⊢ ( ( ( 𝐵 − 𝐴 ) ∈ ℂ ∧ ( 𝐵 − 𝐴 ) ≠ 0 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( 𝐵 − 𝐴 ) ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 60 | 57 58 59 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( 𝐵 − 𝐴 ) ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 61 | oveq1 | ⊢ ( 𝑥 = ( 𝑦 − 𝐴 ) → ( 𝑥 / ( 𝐵 − 𝐴 ) ) = ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) | |
| 62 | 48 54 14 60 61 | cnmpt11 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ) |
| 63 | 46 62 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ) |
| 64 | dfdm4 | ⊢ dom 𝐹 = ran ◡ 𝐹 | |
| 65 | 64 | eqimss2i | ⊢ ran ◡ 𝐹 ⊆ dom 𝐹 |
| 66 | f1odm | ⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 𝐴 [,] 𝐵 ) → dom 𝐹 = ( 0 [,] 1 ) ) | |
| 67 | 35 66 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → dom 𝐹 = ( 0 [,] 1 ) ) |
| 68 | 65 67 | sseqtrid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ran ◡ 𝐹 ⊆ ( 0 [,] 1 ) ) |
| 69 | unitssre | ⊢ ( 0 [,] 1 ) ⊆ ℝ | |
| 70 | 69 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 0 [,] 1 ) ⊆ ℝ ) |
| 71 | 70 41 | sstrdi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 0 [,] 1 ) ⊆ ℂ ) |
| 72 | cnrest2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ ran ◡ 𝐹 ⊆ ( 0 [,] 1 ) ∧ ( 0 [,] 1 ) ⊆ ℂ ) → ( ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ↔ ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐽 ↾t ( 0 [,] 1 ) ) ) ) ) | |
| 73 | 13 68 71 72 | mp3an2i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ↔ ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐽 ↾t ( 0 [,] 1 ) ) ) ) ) |
| 74 | 63 73 | mpbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐽 ↾t ( 0 [,] 1 ) ) ) ) |
| 75 | 5 | oveq2i | ⊢ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn II ) = ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐽 ↾t ( 0 [,] 1 ) ) ) |
| 76 | 74 75 | eleqtrrdi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn II ) ) |
| 77 | ishmeo | ⊢ ( 𝐹 ∈ ( II Homeo ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ↔ ( 𝐹 ∈ ( II Cn ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ∧ ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn II ) ) ) | |
| 78 | 45 76 77 | sylanbrc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐹 ∈ ( II Homeo ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ) |