This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the unit interval. (Contributed by Jeff Madsen, 11-Jun-2010) (Revised by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dfii3.1 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| Assertion | dfii3 | ⊢ II = ( 𝐽 ↾t ( 0 [,] 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfii3.1 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 2 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 3 | unitssre | ⊢ ( 0 [,] 1 ) ⊆ ℝ | |
| 4 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 5 | 3 4 | sstri | ⊢ ( 0 [,] 1 ) ⊆ ℂ |
| 6 | eqid | ⊢ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) = ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) | |
| 7 | 1 | cnfldtopn | ⊢ 𝐽 = ( MetOpen ‘ ( abs ∘ − ) ) |
| 8 | df-ii | ⊢ II = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) | |
| 9 | 6 7 8 | metrest | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ ( 0 [,] 1 ) ⊆ ℂ ) → ( 𝐽 ↾t ( 0 [,] 1 ) ) = II ) |
| 10 | 2 5 9 | mp2an | ⊢ ( 𝐽 ↾t ( 0 [,] 1 ) ) = II |
| 11 | 10 | eqcomi | ⊢ II = ( 𝐽 ↾t ( 0 [,] 1 ) ) |