This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Describe a bijection from [ 0 , 1 ] to an arbitrary nontrivial closed interval [ A , B ] . (Contributed by Mario Carneiro, 8-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iccf1o.1 | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 𝐵 ) + ( ( 1 − 𝑥 ) · 𝐴 ) ) ) | |
| Assertion | iccf1o | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 𝐴 [,] 𝐵 ) ∧ ◡ 𝐹 = ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccf1o.1 | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 𝐵 ) + ( ( 1 − 𝑥 ) · 𝐴 ) ) ) | |
| 2 | elicc01 | ⊢ ( 𝑥 ∈ ( 0 [,] 1 ) ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) | |
| 3 | 2 | simp1bi | ⊢ ( 𝑥 ∈ ( 0 [,] 1 ) → 𝑥 ∈ ℝ ) |
| 4 | 3 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → 𝑥 ∈ ℝ ) |
| 5 | 4 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → 𝑥 ∈ ℂ ) |
| 6 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → 𝐵 ∈ ℝ ) | |
| 7 | 6 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → 𝐵 ∈ ℂ ) |
| 8 | 5 7 | mulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → ( 𝑥 · 𝐵 ) ∈ ℂ ) |
| 9 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 10 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 1 − 𝑥 ) ∈ ℂ ) | |
| 11 | 9 5 10 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → ( 1 − 𝑥 ) ∈ ℂ ) |
| 12 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → 𝐴 ∈ ℝ ) | |
| 13 | 12 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → 𝐴 ∈ ℂ ) |
| 14 | 11 13 | mulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → ( ( 1 − 𝑥 ) · 𝐴 ) ∈ ℂ ) |
| 15 | 8 14 | addcomd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → ( ( 𝑥 · 𝐵 ) + ( ( 1 − 𝑥 ) · 𝐴 ) ) = ( ( ( 1 − 𝑥 ) · 𝐴 ) + ( 𝑥 · 𝐵 ) ) ) |
| 16 | lincmb01cmp | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑥 ) · 𝐴 ) + ( 𝑥 · 𝐵 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 17 | 15 16 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → ( ( 𝑥 · 𝐵 ) + ( ( 1 − 𝑥 ) · 𝐴 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 18 | simpr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 19 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℝ ) | |
| 20 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ ) | |
| 21 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) ) | |
| 22 | 21 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) ) |
| 23 | 22 | biimpa | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) |
| 24 | 23 | simp1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ∈ ℝ ) |
| 25 | eqid | ⊢ ( 𝐴 − 𝐴 ) = ( 𝐴 − 𝐴 ) | |
| 26 | eqid | ⊢ ( 𝐵 − 𝐴 ) = ( 𝐵 − 𝐴 ) | |
| 27 | 25 26 | iccshftl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 − 𝐴 ) ∈ ( ( 𝐴 − 𝐴 ) [,] ( 𝐵 − 𝐴 ) ) ) ) |
| 28 | 19 20 24 19 27 | syl22anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 − 𝐴 ) ∈ ( ( 𝐴 − 𝐴 ) [,] ( 𝐵 − 𝐴 ) ) ) ) |
| 29 | 18 28 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 − 𝐴 ) ∈ ( ( 𝐴 − 𝐴 ) [,] ( 𝐵 − 𝐴 ) ) ) |
| 30 | 24 19 | resubcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 − 𝐴 ) ∈ ℝ ) |
| 31 | 30 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 − 𝐴 ) ∈ ℂ ) |
| 32 | difrp | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐵 − 𝐴 ) ∈ ℝ+ ) ) | |
| 33 | 32 | biimp3a | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐵 − 𝐴 ) ∈ ℝ+ ) |
| 34 | 33 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐵 − 𝐴 ) ∈ ℝ+ ) |
| 35 | 34 | rpcnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐵 − 𝐴 ) ∈ ℂ ) |
| 36 | 34 | rpne0d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐵 − 𝐴 ) ≠ 0 ) |
| 37 | 31 35 36 | divcan1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐵 − 𝐴 ) ) = ( 𝑦 − 𝐴 ) ) |
| 38 | 35 | mul02d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 0 · ( 𝐵 − 𝐴 ) ) = 0 ) |
| 39 | 19 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℂ ) |
| 40 | 39 | subidd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 − 𝐴 ) = 0 ) |
| 41 | 38 40 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 0 · ( 𝐵 − 𝐴 ) ) = ( 𝐴 − 𝐴 ) ) |
| 42 | 35 | mullidd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 1 · ( 𝐵 − 𝐴 ) ) = ( 𝐵 − 𝐴 ) ) |
| 43 | 41 42 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 0 · ( 𝐵 − 𝐴 ) ) [,] ( 1 · ( 𝐵 − 𝐴 ) ) ) = ( ( 𝐴 − 𝐴 ) [,] ( 𝐵 − 𝐴 ) ) ) |
| 44 | 29 37 43 | 3eltr4d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐵 − 𝐴 ) ) ∈ ( ( 0 · ( 𝐵 − 𝐴 ) ) [,] ( 1 · ( 𝐵 − 𝐴 ) ) ) ) |
| 45 | 0red | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 0 ∈ ℝ ) | |
| 46 | 1red | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 1 ∈ ℝ ) | |
| 47 | 30 34 | rerpdivcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ∈ ℝ ) |
| 48 | eqid | ⊢ ( 0 · ( 𝐵 − 𝐴 ) ) = ( 0 · ( 𝐵 − 𝐴 ) ) | |
| 49 | eqid | ⊢ ( 1 · ( 𝐵 − 𝐴 ) ) = ( 1 · ( 𝐵 − 𝐴 ) ) | |
| 50 | 48 49 | iccdil | ⊢ ( ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ) ∧ ( ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ∈ ℝ ∧ ( 𝐵 − 𝐴 ) ∈ ℝ+ ) ) → ( ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ∈ ( 0 [,] 1 ) ↔ ( ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐵 − 𝐴 ) ) ∈ ( ( 0 · ( 𝐵 − 𝐴 ) ) [,] ( 1 · ( 𝐵 − 𝐴 ) ) ) ) ) |
| 51 | 45 46 47 34 50 | syl22anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ∈ ( 0 [,] 1 ) ↔ ( ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) · ( 𝐵 − 𝐴 ) ) ∈ ( ( 0 · ( 𝐵 − 𝐴 ) ) [,] ( 1 · ( 𝐵 − 𝐴 ) ) ) ) ) |
| 52 | 44 51 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ∈ ( 0 [,] 1 ) ) |
| 53 | eqcom | ⊢ ( 𝑥 = ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ↔ ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) = 𝑥 ) | |
| 54 | 31 | adantrl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑦 − 𝐴 ) ∈ ℂ ) |
| 55 | 5 | adantrr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑥 ∈ ℂ ) |
| 56 | 35 | adantrl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐵 − 𝐴 ) ∈ ℂ ) |
| 57 | 36 | adantrl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐵 − 𝐴 ) ≠ 0 ) |
| 58 | 54 55 56 57 | divmul3d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) = 𝑥 ↔ ( 𝑦 − 𝐴 ) = ( 𝑥 · ( 𝐵 − 𝐴 ) ) ) ) |
| 59 | 53 58 | bitrid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 = ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ↔ ( 𝑦 − 𝐴 ) = ( 𝑥 · ( 𝐵 − 𝐴 ) ) ) ) |
| 60 | 24 | adantrl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑦 ∈ ℝ ) |
| 61 | 60 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑦 ∈ ℂ ) |
| 62 | 39 | adantrl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝐴 ∈ ℂ ) |
| 63 | 6 12 | resubcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 64 | 4 63 | remulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → ( 𝑥 · ( 𝐵 − 𝐴 ) ) ∈ ℝ ) |
| 65 | 64 | adantrr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 · ( 𝐵 − 𝐴 ) ) ∈ ℝ ) |
| 66 | 65 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 · ( 𝐵 − 𝐴 ) ) ∈ ℂ ) |
| 67 | 61 62 66 | subadd2d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝑦 − 𝐴 ) = ( 𝑥 · ( 𝐵 − 𝐴 ) ) ↔ ( ( 𝑥 · ( 𝐵 − 𝐴 ) ) + 𝐴 ) = 𝑦 ) ) |
| 68 | eqcom | ⊢ ( ( ( 𝑥 · ( 𝐵 − 𝐴 ) ) + 𝐴 ) = 𝑦 ↔ 𝑦 = ( ( 𝑥 · ( 𝐵 − 𝐴 ) ) + 𝐴 ) ) | |
| 69 | 67 68 | bitrdi | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝑦 − 𝐴 ) = ( 𝑥 · ( 𝐵 − 𝐴 ) ) ↔ 𝑦 = ( ( 𝑥 · ( 𝐵 − 𝐴 ) ) + 𝐴 ) ) ) |
| 70 | 5 13 | mulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → ( 𝑥 · 𝐴 ) ∈ ℂ ) |
| 71 | 8 70 13 | subadd23d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → ( ( ( 𝑥 · 𝐵 ) − ( 𝑥 · 𝐴 ) ) + 𝐴 ) = ( ( 𝑥 · 𝐵 ) + ( 𝐴 − ( 𝑥 · 𝐴 ) ) ) ) |
| 72 | 5 7 13 | subdid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → ( 𝑥 · ( 𝐵 − 𝐴 ) ) = ( ( 𝑥 · 𝐵 ) − ( 𝑥 · 𝐴 ) ) ) |
| 73 | 72 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → ( ( 𝑥 · ( 𝐵 − 𝐴 ) ) + 𝐴 ) = ( ( ( 𝑥 · 𝐵 ) − ( 𝑥 · 𝐴 ) ) + 𝐴 ) ) |
| 74 | 1cnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → 1 ∈ ℂ ) | |
| 75 | 74 5 13 | subdird | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → ( ( 1 − 𝑥 ) · 𝐴 ) = ( ( 1 · 𝐴 ) − ( 𝑥 · 𝐴 ) ) ) |
| 76 | 13 | mullidd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → ( 1 · 𝐴 ) = 𝐴 ) |
| 77 | 76 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → ( ( 1 · 𝐴 ) − ( 𝑥 · 𝐴 ) ) = ( 𝐴 − ( 𝑥 · 𝐴 ) ) ) |
| 78 | 75 77 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → ( ( 1 − 𝑥 ) · 𝐴 ) = ( 𝐴 − ( 𝑥 · 𝐴 ) ) ) |
| 79 | 78 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → ( ( 𝑥 · 𝐵 ) + ( ( 1 − 𝑥 ) · 𝐴 ) ) = ( ( 𝑥 · 𝐵 ) + ( 𝐴 − ( 𝑥 · 𝐴 ) ) ) ) |
| 80 | 71 73 79 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → ( ( 𝑥 · ( 𝐵 − 𝐴 ) ) + 𝐴 ) = ( ( 𝑥 · 𝐵 ) + ( ( 1 − 𝑥 ) · 𝐴 ) ) ) |
| 81 | 80 | adantrr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝑥 · ( 𝐵 − 𝐴 ) ) + 𝐴 ) = ( ( 𝑥 · 𝐵 ) + ( ( 1 − 𝑥 ) · 𝐴 ) ) ) |
| 82 | 81 | eqeq2d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑦 = ( ( 𝑥 · ( 𝐵 − 𝐴 ) ) + 𝐴 ) ↔ 𝑦 = ( ( 𝑥 · 𝐵 ) + ( ( 1 − 𝑥 ) · 𝐴 ) ) ) ) |
| 83 | 59 69 82 | 3bitrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 = ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ↔ 𝑦 = ( ( 𝑥 · 𝐵 ) + ( ( 1 − 𝑥 ) · 𝐴 ) ) ) ) |
| 84 | 1 17 52 83 | f1ocnv2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 𝐴 [,] 𝐵 ) ∧ ◡ 𝐹 = ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) ) |