This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of icchmeo as of 9-Apr-2025. (Contributed by Mario Carneiro, 8-Sep-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | icchmeoOLD.j | |- J = ( TopOpen ` CCfld ) |
|
| icchmeoOLD.f | |- F = ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) |
||
| Assertion | icchmeoOLD | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> F e. ( II Homeo ( J |`t ( A [,] B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icchmeoOLD.j | |- J = ( TopOpen ` CCfld ) |
|
| 2 | icchmeoOLD.f | |- F = ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) |
|
| 3 | iitopon | |- II e. ( TopOn ` ( 0 [,] 1 ) ) |
|
| 4 | 3 | a1i | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) |
| 5 | 1 | dfii3 | |- II = ( J |`t ( 0 [,] 1 ) ) |
| 6 | 5 | oveq2i | |- ( II Cn II ) = ( II Cn ( J |`t ( 0 [,] 1 ) ) ) |
| 7 | 1 | cnfldtop | |- J e. Top |
| 8 | cnrest2r | |- ( J e. Top -> ( II Cn ( J |`t ( 0 [,] 1 ) ) ) C_ ( II Cn J ) ) |
|
| 9 | 7 8 | ax-mp | |- ( II Cn ( J |`t ( 0 [,] 1 ) ) ) C_ ( II Cn J ) |
| 10 | 6 9 | eqsstri | |- ( II Cn II ) C_ ( II Cn J ) |
| 11 | 4 | cnmptid | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. ( 0 [,] 1 ) |-> x ) e. ( II Cn II ) ) |
| 12 | 10 11 | sselid | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. ( 0 [,] 1 ) |-> x ) e. ( II Cn J ) ) |
| 13 | 1 | cnfldtopon | |- J e. ( TopOn ` CC ) |
| 14 | 13 | a1i | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> J e. ( TopOn ` CC ) ) |
| 15 | simp2 | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> B e. RR ) |
|
| 16 | 15 | recnd | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> B e. CC ) |
| 17 | 4 14 16 | cnmptc | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. ( 0 [,] 1 ) |-> B ) e. ( II Cn J ) ) |
| 18 | 1 | mulcn | |- x. e. ( ( J tX J ) Cn J ) |
| 19 | 18 | a1i | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> x. e. ( ( J tX J ) Cn J ) ) |
| 20 | 4 12 17 19 | cnmpt12f | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. ( 0 [,] 1 ) |-> ( x x. B ) ) e. ( II Cn J ) ) |
| 21 | 1cnd | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> 1 e. CC ) |
|
| 22 | 4 14 21 | cnmptc | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. ( 0 [,] 1 ) |-> 1 ) e. ( II Cn J ) ) |
| 23 | 1 | subcn | |- - e. ( ( J tX J ) Cn J ) |
| 24 | 23 | a1i | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> - e. ( ( J tX J ) Cn J ) ) |
| 25 | 4 22 12 24 | cnmpt12f | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. ( 0 [,] 1 ) |-> ( 1 - x ) ) e. ( II Cn J ) ) |
| 26 | simp1 | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> A e. RR ) |
|
| 27 | 26 | recnd | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> A e. CC ) |
| 28 | 4 14 27 | cnmptc | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. ( 0 [,] 1 ) |-> A ) e. ( II Cn J ) ) |
| 29 | 4 25 28 19 | cnmpt12f | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. ( 0 [,] 1 ) |-> ( ( 1 - x ) x. A ) ) e. ( II Cn J ) ) |
| 30 | 1 | addcn | |- + e. ( ( J tX J ) Cn J ) |
| 31 | 30 | a1i | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> + e. ( ( J tX J ) Cn J ) ) |
| 32 | 4 20 29 31 | cnmpt12f | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) e. ( II Cn J ) ) |
| 33 | 2 32 | eqeltrid | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> F e. ( II Cn J ) ) |
| 34 | 2 | iccf1o | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( F : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) /\ `' F = ( y e. ( A [,] B ) |-> ( ( y - A ) / ( B - A ) ) ) ) ) |
| 35 | 34 | simpld | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> F : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) ) |
| 36 | f1of | |- ( F : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) -> F : ( 0 [,] 1 ) --> ( A [,] B ) ) |
|
| 37 | frn | |- ( F : ( 0 [,] 1 ) --> ( A [,] B ) -> ran F C_ ( A [,] B ) ) |
|
| 38 | 35 36 37 | 3syl | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ran F C_ ( A [,] B ) ) |
| 39 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 40 | 39 | 3adant3 | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( A [,] B ) C_ RR ) |
| 41 | ax-resscn | |- RR C_ CC |
|
| 42 | 40 41 | sstrdi | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( A [,] B ) C_ CC ) |
| 43 | cnrest2 | |- ( ( J e. ( TopOn ` CC ) /\ ran F C_ ( A [,] B ) /\ ( A [,] B ) C_ CC ) -> ( F e. ( II Cn J ) <-> F e. ( II Cn ( J |`t ( A [,] B ) ) ) ) ) |
|
| 44 | 13 38 42 43 | mp3an2i | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( F e. ( II Cn J ) <-> F e. ( II Cn ( J |`t ( A [,] B ) ) ) ) ) |
| 45 | 33 44 | mpbid | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> F e. ( II Cn ( J |`t ( A [,] B ) ) ) ) |
| 46 | 34 | simprd | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> `' F = ( y e. ( A [,] B ) |-> ( ( y - A ) / ( B - A ) ) ) ) |
| 47 | resttopon | |- ( ( J e. ( TopOn ` CC ) /\ ( A [,] B ) C_ CC ) -> ( J |`t ( A [,] B ) ) e. ( TopOn ` ( A [,] B ) ) ) |
|
| 48 | 13 42 47 | sylancr | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( J |`t ( A [,] B ) ) e. ( TopOn ` ( A [,] B ) ) ) |
| 49 | cnrest2r | |- ( J e. Top -> ( ( J |`t ( A [,] B ) ) Cn ( J |`t ( A [,] B ) ) ) C_ ( ( J |`t ( A [,] B ) ) Cn J ) ) |
|
| 50 | 7 49 | ax-mp | |- ( ( J |`t ( A [,] B ) ) Cn ( J |`t ( A [,] B ) ) ) C_ ( ( J |`t ( A [,] B ) ) Cn J ) |
| 51 | 48 | cnmptid | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( y e. ( A [,] B ) |-> y ) e. ( ( J |`t ( A [,] B ) ) Cn ( J |`t ( A [,] B ) ) ) ) |
| 52 | 50 51 | sselid | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( y e. ( A [,] B ) |-> y ) e. ( ( J |`t ( A [,] B ) ) Cn J ) ) |
| 53 | 48 14 27 | cnmptc | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( y e. ( A [,] B ) |-> A ) e. ( ( J |`t ( A [,] B ) ) Cn J ) ) |
| 54 | 48 52 53 24 | cnmpt12f | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( y e. ( A [,] B ) |-> ( y - A ) ) e. ( ( J |`t ( A [,] B ) ) Cn J ) ) |
| 55 | difrp | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( B - A ) e. RR+ ) ) |
|
| 56 | 55 | biimp3a | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( B - A ) e. RR+ ) |
| 57 | 56 | rpcnd | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( B - A ) e. CC ) |
| 58 | 56 | rpne0d | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( B - A ) =/= 0 ) |
| 59 | 1 | divccn | |- ( ( ( B - A ) e. CC /\ ( B - A ) =/= 0 ) -> ( x e. CC |-> ( x / ( B - A ) ) ) e. ( J Cn J ) ) |
| 60 | 57 58 59 | syl2anc | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( x e. CC |-> ( x / ( B - A ) ) ) e. ( J Cn J ) ) |
| 61 | oveq1 | |- ( x = ( y - A ) -> ( x / ( B - A ) ) = ( ( y - A ) / ( B - A ) ) ) |
|
| 62 | 48 54 14 60 61 | cnmpt11 | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( y e. ( A [,] B ) |-> ( ( y - A ) / ( B - A ) ) ) e. ( ( J |`t ( A [,] B ) ) Cn J ) ) |
| 63 | 46 62 | eqeltrd | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> `' F e. ( ( J |`t ( A [,] B ) ) Cn J ) ) |
| 64 | dfdm4 | |- dom F = ran `' F |
|
| 65 | 64 | eqimss2i | |- ran `' F C_ dom F |
| 66 | f1odm | |- ( F : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) -> dom F = ( 0 [,] 1 ) ) |
|
| 67 | 35 66 | syl | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> dom F = ( 0 [,] 1 ) ) |
| 68 | 65 67 | sseqtrid | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ran `' F C_ ( 0 [,] 1 ) ) |
| 69 | unitssre | |- ( 0 [,] 1 ) C_ RR |
|
| 70 | 69 | a1i | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( 0 [,] 1 ) C_ RR ) |
| 71 | 70 41 | sstrdi | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( 0 [,] 1 ) C_ CC ) |
| 72 | cnrest2 | |- ( ( J e. ( TopOn ` CC ) /\ ran `' F C_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) C_ CC ) -> ( `' F e. ( ( J |`t ( A [,] B ) ) Cn J ) <-> `' F e. ( ( J |`t ( A [,] B ) ) Cn ( J |`t ( 0 [,] 1 ) ) ) ) ) |
|
| 73 | 13 68 71 72 | mp3an2i | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( `' F e. ( ( J |`t ( A [,] B ) ) Cn J ) <-> `' F e. ( ( J |`t ( A [,] B ) ) Cn ( J |`t ( 0 [,] 1 ) ) ) ) ) |
| 74 | 63 73 | mpbid | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> `' F e. ( ( J |`t ( A [,] B ) ) Cn ( J |`t ( 0 [,] 1 ) ) ) ) |
| 75 | 5 | oveq2i | |- ( ( J |`t ( A [,] B ) ) Cn II ) = ( ( J |`t ( A [,] B ) ) Cn ( J |`t ( 0 [,] 1 ) ) ) |
| 76 | 74 75 | eleqtrrdi | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> `' F e. ( ( J |`t ( A [,] B ) ) Cn II ) ) |
| 77 | ishmeo | |- ( F e. ( II Homeo ( J |`t ( A [,] B ) ) ) <-> ( F e. ( II Cn ( J |`t ( A [,] B ) ) ) /\ `' F e. ( ( J |`t ( A [,] B ) ) Cn II ) ) ) |
|
| 78 | 45 76 77 | sylanbrc | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> F e. ( II Homeo ( J |`t ( A [,] B ) ) ) ) |